RAM issue with semi-supervised CNN model training

Hey Guys,
I’m trying to training a binary classifier by transfer learning on EfficientNet. Since I have lots of unlabeled data, I use semi-supervised method to generate multiple “pseudo labeled” data before the model go through each epoch.

Since Colab has its limits of RAM usage, I delete some large variables(like numpy arrays, dataset, dataloader…) in each loop, however the RAM still increase in every loop like the picture shown below.

Below is my Training loop which consists of 3 main structure: semi-supervised, training loop, validation loop. I’m not sure which step cause the RAM to keep increase in each epoch.

(1) semi-supervised

for epoch in range(n_epochs):
    print(f"[ Epoch | {epoch + 1:03d}/{n_epochs:03d} ]")
    if do_semi:
        model.eval()
        dataset_0 = []
        dataset_1 = []

        for img in pseudo_loader:
            with torch.no_grad():
                logits = model(img.to(device))
            probs = softmax(logits)

            # Filter the data and construct a new dataset.
            for i in range(len(probs)):
                p = probs[i].tolist()
                idx = p.index(max(p))
                if p[idx] >= threshold:
                    if idx == 0:
                        dataset_0.append(img[i].numpy().reshape(128, 128, 3))
                    else:
                        dataset_1.append(img[i].numpy().reshape(128, 128, 3))
        # stratified sampling with labels
        len_0, len_1 = len(dataset_0), len(dataset_1)
        print('label 0: ', len_0)
        print('label 1: ', len_1)

        # since there may be RAM memory error, restrict to 1000
        if len_0 > 1000:
            dataset_0 = random.sample(dataset_0, 1000)
        if len_1 > 1000:
            dataset_1 = random.sample(dataset_1, 1000)

        if len_0 == len_1:
            pseudo_x = np.array(dataset_0 + dataset_1)
            pseudo_y = ['0' for _ in range(len(dataset_0))] + ['1' for _ in range(len(dataset_1))]

        elif len_0 > len_1:
            dataset_0 = random.sample(dataset_0, len(dataset_1))
            pseudo_x = np.array(dataset_0 + dataset_1)
            pseudo_y = ['0' for _ in range(len(dataset_0))] + ['1' for _ in range(len(dataset_1))]

        else:
            dataset_1 = random.sample(dataset_1, len(dataset_0))
            pseudo_x = np.array(dataset_0 + dataset_1)
            pseudo_y = ['0' for _ in range(len(dataset_0))] + ['1' for _ in range(len(dataset_1))]

        if len(pseudo_x) != 0:
            new_dataset = CustomTensorDataset(pseudo_x, np.array(pseudo_y), 'pseudo')
        else:
            new_dataset = []
        # print how many pseudo label data added
        print('Total number of pseudo labeled data are added: ', len(new_dataset))
        # release RAM
        dataset_0 = None
        dataset_1 = None
        pseudo_x  = None
        pseudo_y  = None
        del dataset_0, dataset_1, pseudo_x, pseudo_y
        gc.collect()
        # Turn off the eval mode.
        model.train()

        concat_dataset = ConcatDataset([train_set, new_dataset])
        train_loader = DataLoader(concat_dataset, batch_size=batch_size, shuffle=True)

I think the RAM memory issue was caused by the semi-supervised part.
I compare the RAM usage like below images

RAM usage when apply semi-supervised part
APPLY

RAM usage when NOT apply semi-supervised part
Imgur

But I was wondering that why I’ve already delete some variables but RAM usage still climbing.
Thanks for your helps!!!