Replacing torch.cdist() function to eliminate GPU out-of-memory runtime error

How shall I modify this new_cdist() function to eliminate GPU out-of-memory runtime error ?

More specifically replacing torch.cdist() with something lighter in memory footprint.

Note: The following code snippet is related to a new type of back-propagation equation and adaptive learning rate.

See here for more information on how the existing code works

I saw there are two cdist() implementations online (code 1 , code 2)

def new_cdist(p, eta):
    class cdist(torch.autograd.Function):
        @staticmethod
        def forward(ctx, W, X):
            ctx.save_for_backward(W, X)
            out = -torch.cdist(W, X, p)
            return out

        @staticmethod
        def backward(ctx, grad_output):
            W, X = ctx.saved_tensors
            grad_W = grad_X = None
            if ctx.needs_input_grad[0]:
                _temp1 = torch.unsqueeze(X, 2).expand(X.shape[0], X.shape[1], W.shape[0]).permute(1, 0, 2)
                _temp2 = torch.unsqueeze(W.transpose(0, 1), 1)
                _temp = torch.cdist(_temp1, _temp2, p).squeeze().transpose(0, 1)
                grad_W = torch.matmul(grad_output, _temp)
                # print('before norm: ', torch.norm(grad_W))
                grad_W = eta * np.sqrt(grad_W.numel()) / torch.norm(grad_W) * grad_W
                print('after norm: ', torch.norm(grad_W))
            if ctx.needs_input_grad[1]:
                _temp1 = torch.unsqueeze(W, 2).expand(W.shape[0], W.shape[1], X.shape[0]).permute(1, 0, 2)
                _temp2 = torch.unsqueeze(X.transpose(0, 1), 1)
                _temp = torch.cdist(_temp1, _temp2, p).squeeze().transpose(0, 1)
                _temp = torch.nn.functional.hardtanh(_temp, min_val=-1., max_val=1.)
                grad_X = torch.matmul(grad_output.transpose(0, 1), _temp)
            return grad_W, grad_X
    return cdist().apply