You should be careful with NaN
which will appear if the mse=0
. Something like this would probably be better :
class RMSELoss(nn.Module):
def __init__(self, eps=1e-6):
super().__init__()
self.mse = nn.MSELoss()
self.eps = eps
def forward(self,yhat,y):
loss = torch.sqrt(self.mse(yhat,y) + self.eps)
return loss