RuntimeError: CUDA out of memory. Tried to allocate 86.00 MiB (GPU 0; 10.73 GiB total capacity; 9.75 GiB already allocated; 18.69 MiB free; 9.94 GiB reserved in total by PyTorch)

training loop code is here, can anyone help ?
error happen here: d_loss.backward()

for epoch in range(num_epoch):
	for i, (img,_) in enumerate(dataloader):

		if (i+1)*batch_size < num_samples:
			batch_vectors=torch.cat((label_vectors[i*batch_size:(i+1)*batch_size]),0)
			batch_vectors=batch_vectors.view(-1,32).float()
		else:
			batch_vectors=torch.cat((label_vectors[i*batch_size:-1]),0)
			batch_vectors=batch_vectors.view(-1,32).float()


		num_img = img.size(0)
		#train discriminator
		# compute loss of real_matched_img
		img = img.view(num_img,3,96,96)
		real_img = Variable(img).to(device)
		real_label = Variable(torch.ones(num_img)).to(device)
		fake_label = Variable(torch.zeros(num_img)).to(device)
		batch_vectors = Variable(batch_vectors).to(device)
		matched_real_out = D(real_img,batch_vectors)
		d_loss_matched_real = criterion(matched_real_out, real_label)
		matched_real_scores = matched_real_out  # closer to 1 means better

		# compute loss of fake_matched_img
		z = Variable(torch.randn(num_img, z_dimension)).to(device)
		z = torch.cat((z,batch_vectors),axis=1).to(device)
		fake_img = G(z)
		matched_fake_out = D(fake_img,batch_vectors)
		d_loss_matched_fake = criterion(matched_fake_out, fake_label)
		matched_fake_out_scores = matched_fake_out  # closer to 0 means better

		# compute loss of real_unmatched_img

		rand_label_vectors=random.sample(label_vectors,num_img)
		rand_batch_vectors=torch.cat((rand_label_vectors[:]),0)
		rand_batch_vectors=rand_batch_vectors.view(-1,32).float().to(device)


		z = Variable(torch.randn(num_img, z_dimension)).to(device)
		z = torch.cat((z,rand_batch_vectors),axis=1).to(device)
		fake_img = G(z)
		unmatched_real_out = D(fake_img,batch_vectors)
		d_loss_unmatched_real = criterion(unmatched_real_out, fake_label)
		unmatched_real_out_scores = unmatched_real_out  # closer to 0 means better

		# bp and optimize
		d_loss = d_loss_matched_real + d_loss_matched_fake + d_loss_unmatched_real
		d_optimizer.zero_grad()
		d_loss.backward()
		d_optimizer.step()

		# ===============train generator
		# compute loss of fake_img
		# compute loss of fake_matched_img
		z = Variable(torch.randn(num_img, z_dimension)).to(device)
		z = torch.cat((z,batch_vectors),axis=1).to(device)
		fake_img = G(z)
		matched_fake_out = D(fake_img,batch_vectors)
		matched_fake_out_scores = matched_fake_out

		g_loss = criterion(matched_fake_out,real_label)

		# bp and optimize
		g_optimizer.zero_grad()
		g_loss.backward()
		g_optimizer.step()


		print('Epoch [{}/{}], Batch {},d_loss: {:.6f}, g_loss: {:.6f} '
				  .format(
				epoch, num_epoch,i,d_loss.data, g_loss.data,
				))
		if epoch == 0:
			real_images = to_img(real_img.cpu().data)
			save_image(real_images, './img/real_images.png')

		fake_images = to_img(fake_img.cpu().data)
		save_image(fake_images, './img/fake_images-{}.png'.format(i+(epoch-1)*batch_size))

Whenever I got this error while I was running my code on jupyter notebook, I solved it by logging out, and closing my browser. When re-started my jupyter notebook, and re-running same code it usually works! But if you are running it through any other application or via command line then ignore this answer!