RuntimeError: input.size(-1) must be equal to input_size. Expected 64, got 84544

hi there. i’m new in pytorch and i’m trying to predict membrane protein topology with a lstm but i have an issue with the embedding layer (i think).

I set embedding_dim = 64 but it seems that after every cycle, the dimension grows up. If I adapt the embedding dim empirically the RAM memory goes out max capacity.

I took data from Topcons website and I made a df with two columns (first for protein sequence and second for labelled one). Then I convert them to integers and padded them. I created tensors and batches (64)

Expected 64, got 84544. Max length of sequences is 1321, and 84544/64=1321. Made this discovery, how can I resolve the issue?

here the error and below the code.

Can you help me please?

RuntimeError                              Traceback (most recent call last)
<ipython-input-20-c13029126c88> in <module>
     15         # Step 3. Run our forward pass.
     16 
---> 17         output = model(sentence_in)
     18 
     19         loss = model.neg_log_likelihood(output, targets)

6 frames
/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1192         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1193                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1194             return forward_call(*input, **kwargs)
   1195         # Do not call functions when jit is used
   1196         full_backward_hooks, non_full_backward_hooks = [], []

<ipython-input-4-68e616720828> in forward(self, sentence)
    135         # Get the emission scores from the BiLSTM
    136 
--> 137         lstm_feats = self._get_lstm_features(sentence)
    138 
    139         # Find the best path, given the features.

<ipython-input-4-68e616720828> in _get_lstm_features(self, sentence)
     67         #sentence = sentence.transpose(1, 0)#
     68         embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
---> 69         lstm_out, self.hidden = self.lstm(embeds, self.hidden)
     70         lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
     71         lstm_feats = self.hidden2tag(lstm_out)

/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1192         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1193                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1194             return forward_call(*input, **kwargs)
   1195         # Do not call functions when jit is used
   1196         full_backward_hooks, non_full_backward_hooks = [], []

/usr/local/lib/python3.8/dist-packages/torch/nn/modules/rnn.py in forward(self, input, hx)
    770             hx = self.permute_hidden(hx, sorted_indices)
    771 
--> 772         self.check_forward_args(input, hx, batch_sizes)
    773         if batch_sizes is None:
    774             result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,

/usr/local/lib/python3.8/dist-packages/torch/nn/modules/rnn.py in check_forward_args(self, input, hidden, batch_sizes)
    695                            batch_sizes: Optional[Tensor],
    696                            ):
--> 697         self.check_input(input, batch_sizes)
    698         self.check_hidden_size(hidden[0], self.get_expected_hidden_size(input, batch_sizes),
    699                                'Expected hidden[0] size {}, got {}')

/usr/local/lib/python3.8/dist-packages/torch/nn/modules/rnn.py in check_input(self, input, batch_sizes)
    208                     expected_input_dim, input.dim()))
    209         if self.input_size != input.size(-1):
--> 210             raise RuntimeError(
    211                 'input.size(-1) must be equal to input_size. Expected {}, got {}'.format(
    212                     self.input_size, input.size(-1)))

RuntimeError: input.size(-1) must be equal to input_size. Expected 64, got 84544

code:

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import pandas as pd
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import random_split, DataLoader, TensorDataset 
from torch.nn.utils.rnn import pad_sequence

with open("TM.3line") as f:
    lines = f.readlines()

sequences = []
labels = []
current_sequence = ""
current_label = ""

for line in lines:
    if line.startswith(">"):
        if current_sequence:
            sequences.append(current_sequence)
            labels.append(current_label)
        current_sequence = ""
        current_label = ""
    elif line.startswith("M"):
        current_sequence = line.strip()
    else:
        current_label += line.strip()

sequences.append(current_sequence)
labels.append(current_label)

with open("output_file.csv", "w") as f:
    f.write("sequence,label\n")
    for i in range(len(sequences)):
        f.write(f"{sequences[i]},{labels[i]}\n")
def argmax(vec):
    # return the argmax as a python int
    _, idx = torch.max(vec, 1)
    return idx.item()


def prepare_sequence(seq, to_ix):
    idxs = [to_ix[w] for w in seq]
    return torch.tensor(idxs, dtype=torch.long)


# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
    max_score = vec[0, argmax(vec)]
    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
    return max_score + \
        torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))

class BiLSTM_CRF(nn.Module):

    def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
        super(BiLSTM_CRF, self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.vocab_size = vocab_size
        self.tag_to_ix = tag_to_ix
        self.tagset_size = len(tag_to_ix)

        self.word_embeds = nn.Embedding(vocab_size, embedding_dim, padding_idx=20)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim,
                            num_layers=1, bidirectional=True, batch_first=True)

        # Maps the output of the LSTM into tag space.
        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)

        # Matrix of transition parameters.  Entry i,j is the score of
        # transitioning *to* i *from* j.
        self.transitions = nn.Parameter(
            torch.randn(self.tagset_size, self.tagset_size))

        # These two statements enforce the constraint that we never transfer
        # to the start tag and we never transfer from the stop tag
        self.transitions.data[tag_to_ix[START_TAG], :] = -10000
        self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000

        self.hidden = self.init_hidden()

    def init_hidden(self):
        return (torch.randn(2, 1, self.hidden_dim),
                torch.randn(2, 1, self.hidden_dim))

    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        init_alphas = torch.full((1, self.tagset_size), -10000)
        # START_TAG has all of the score.
        init_alphas[0][self.tag_to_ix[START_TAG]] = 0

        # Wrap in a variable so that we will get automatic backprop
        forward_var = init_alphas

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward tensors at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].view(
                    1, -1).expand(1, self.tagset_size)
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].view(1, -1)
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = forward_var + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var).view(1))
            forward_var = torch.cat(alphas_t).view(1, -1)
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha

    def _get_lstm_features(self, sentence):
        self.hidden = self.init_hidden()
        #sentence = sentence.transpose(1, 0)#
        embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
        lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
        lstm_feats = self.hidden2tag(lstm_out)
        return lstm_feats

    def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = torch.zeros(1)
        tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
        for i, feat in enumerate(feats):
            score = score + \
                self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
        score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
        return score

    def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        init_vvars = torch.full((1, self.tagset_size), -10000.)
        init_vvars[0][self.tag_to_ix[START_TAG]] = 0

        # forward_var at step i holds the viterbi variables for step i-1
        forward_var = init_vvars
        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = forward_var + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
            # Now add in the emission scores, and assign forward_var to the set
            # of viterbi variables we just computed
            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0][best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag_to_ix[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path

    def neg_log_likelihood(self, sentence, tags):
        feats = self._get_lstm_features(sentence)
        forward_score = self._forward_alg(feats)
        gold_score = self._score_sentence(feats, tags)
        return forward_score - gold_score

    def forward(self, sentence):  # dont confuse this with _forward_alg above.
        # Get the emission scores from the BiLSTM
        
        lstm_feats = self._get_lstm_features(sentence)

        # Find the best path, given the features.
        score, tag_seq = self._viterbi_decode(lstm_feats)
        return score, tag_seq

df = pd.read_csv('output_file.csv')
training_data = [(row.sequence, row.label) for row in df.itertuples()]

word_to_ix = {}
for sentence, tags in training_data:
    for word in sentence:
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)

START_TAG = "<START>"
STOP_TAG = "<STOP>"
PAD_TAG = '5'
EMBEDDING_DIM = 64
HIDDEN_DIM = 20
num_epochs = 15
batch_size = 16
vocab_size=21

tag_to_ix = {"O": 0, "I": 1, "M": 2, START_TAG: 3, STOP_TAG: 4, PAD_TAG: 5}

# Prepare input data
sentence_in = []
targets = []
for sentence, tags in training_data:
    sentence_in.append(prepare_sequence(sentence, word_to_ix))
    targets.append([tag_to_ix[t] for t in tags])

# Pad each sentence to the same length
sentence_in = pad_sequence(sentence_in, padding_value=20, batch_first=True)

# Pad entire batch to the same length
targets = pad_sequence([torch.tensor(t) for t in targets], padding_value=5, batch_first=True)

sentence_in = sentence_in.long()
targets = targets.long()
# Create dataset and dataloader
dataset = TensorDataset(sentence_in, targets)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

model = BiLSTM_CRF(vocab_size, tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.001, weight_decay=1e-4)

for epoch in range(
        num_epochs):  # again, normally you would NOT do 300 epochs, it is toy data
    for i,(sentence, tags) in enumerate(training_data):
        # Step 1. Remember that Pytorch accumulates gradients.
        # We need to clear them out before each instance
        model.zero_grad()

    
        for batch in dataloader:
           sentence_in, targets = batch

        # Step 3. Run our forward pass.
        
        output = model(sentence_in)
        
        loss = model.neg_log_likelihood(output, targets)

        # Step 4. Compute the loss, gradients, and update the parameters by
        # calling optimizer.step()
        loss.backward()
        optimizer.step()

        # Check predictions after training
        with torch.no_grad():
          SAVE_DIR = '/content/'
          #https://discuss.pytorch.org/t/how-to-save-a-model-from-a-previous-epoch/20252/6
          path = os.path.join(SAVE_DIR, 'model.pth')

          torch.save(model.cpu().state_dict(), path) # saving model
          #model.cuda() # moving model to GPU for further training
          print(f'Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{len(training_data) // batch_size}], Loss: {loss.item():.4f}')



The error is raised in:

embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)

as it seems embeds has an invalid shape.
I’m a bit confused about your explanation stating:

as it seems you are working with a sequence length of 1321 and 64 features.
However, you are explicitly flattening the temporal dimension into the feature dimension in the view operation.
Take a look at this small example:

embedding_dim = 64
word_embeds = nn.Embedding(10, embedding_dim)
lstm = nn.LSTM(embedding_dim, 10, batch_first=True)

batch_size = 16
seq_len = 1321
x = torch.randint(0, 10, (batch_size, seq_len))

out = word_embeds(x)
print(out.shape)
# torch.Size([16, 1321, 64]) = [batch_size, seq_len, embedding_dim]

# works
out = lstm(out) 

# fails
out = out.view(len(out), 1, -1)
print(out.shape)
# torch.Size([16, 1, 84544]) = [batch_size, 1, seq_len*embedding_dim]

out = lstm(out)
# RuntimeError: input.size(-1) must be equal to input_size. Expected 64, got 84544

I would assume removing the view operation should fix the issue as seen in my code snippet.

2 Likes

thank you very much, now it works :slight_smile: