I’m trying to train a fully convolutional network with input images that all have a different size.
Model FCN8s
super(FCN8s, self).__init__()
# conv1
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=100)
self.relu1_1 = nn.ReLU(inplace=True)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.relu1_2 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/2
# conv2
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.relu2_1 = nn.ReLU(inplace=True)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.relu2_2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/4
# conv3
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.relu3_2 = nn.ReLU(inplace=True)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.relu3_3 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/8
# conv4
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.relu4_1 = nn.ReLU(inplace=True)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.relu4_2 = nn.ReLU(inplace=True)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.relu4_3 = nn.ReLU(inplace=True)
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/16
# conv5
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_1 = nn.ReLU(inplace=True)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_2 = nn.ReLU(inplace=True)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=1)
self.relu5_3 = nn.ReLU(inplace=True)
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) # 1/32
# fc6
self.fc6 = nn.Conv2d(512, 4096, 7)
self.relu6 = nn.ReLU(inplace=True)
self.drop6 = nn.Dropout2d()
# fc7
self.fc7 = nn.Conv2d(4096, 4096, 1)
self.relu7 = nn.ReLU(inplace=True)
self.drop7 = nn.Dropout2d()
self.score_fr = nn.Conv2d(4096, n_class, 1)
self.score_pool3 = nn.Conv2d(256, n_class, 1)
self.score_pool4 = nn.Conv2d(512, n_class, 1)
self.upscore2 = nn.ConvTranspose2d(
n_class, n_class, 4, stride=2, bias=False)
self.upscore8 = nn.ConvTranspose2d(
n_class, n_class, 16, stride=8, bias=False)
self.upscore_pool4 = nn.ConvTranspose2d(
n_class, n_class, 4, stride=2, bias=False)
I get the following error, and don’t really understand how to fix it:
RuntimeError: shape ‘[1, 573, 447, 1]’ is invalid for input of size 768393
This is on line 32 of trainer.py file hosted on GitHub: torchfcn
log_p = log_p[target.view(n, h, w, 1).repeat(1, 1, 1, c) >= 0]