Hi everyone,
I’m running into a segmentation fault (core dumped) error while training a model using PyTorch on a CUDA-enabled GPU.
I’m not sure what’s going wrong, and would really appreciate any guidance.
My Environment
GPU: 2× NVIDIA GeForce RTX 4060 Ti
Driver Version: 550.120
CUDA Version (Driver-side): 12.4
cuDNN Version: 8902
PyTorch Version: 2.2.0+cu121
Python: 3.10.12
CUDA available: True
Detected CUDA from PyTorch: 12.1
Host OS: Ubuntu 24.04
Docker Image: nvidia/cuda:12.4.1-runtime-ubuntu22.04
Kernel: Linux 6.8.0-55-generic x86_64 with glibc 2.35
Running inside Docker: Yes
The Problem
During training, the script suddenly crashes with a segmentation fault.
The crash does not happen at a specific line every time — sometimes it happens in .backward(), sometimes while creating a tensor on GPU using .to(device).
It usually occurs after a few training batches, not at the very beginning.
Here’s a simplified version of the code:
def train_test_ht_sl(model, train_data, test_data, head_list, tail_list):
import datetime
model.scheduler.step()
print('start training: ', datetime.datetime.now())
model.train()
total_loss = 0.0
slices = train_data.generate_batch(model.batch_size)
for i, j in zip(slices, np.arange(len(slices))):
model.optimizer.zero_grad()
targets, scores = forward(model, i, train_data)
# targets = torch.from_numpy(np.array(targets)).long().to('cuda:1')
targets = torch.tensor(targets).long().to(device)
loss = model.loss_function(scores, targets - 1)
loss.backward() # <- crash sometimes happens here
def forward(model, i, data):
alias_inputs, A, items, mask, targets = data.get_slice(i)
alias_inputs = torch.tensor(alias_inputs, dtype=torch.long, device=device)
items = torch.tensor(items, dtype=torch.long, device=device)
mask = torch.tensor(mask, dtype=torch.long, device=device)
A_np = np.stack(A)
A = torch.tensor(A_np, dtype=torch.float, device=device) # <- or here
hidden = model(items, A)
get = lambda i: hidden[i][alias_inputs[i]]
seq_hidden = torch.stack([get(i) for i in torch.arange(len(alias_inputs)).long()])
return targets, model.compute_scores(seq_hidden, mask)
Error excerpt
Training Progress: 20%|██ | 6/30 [16:14<1:04:58, 162.43s/it]
Fatal Python error: Segmentation fault
Current thread 0x00007... (most recent call first):
<no Python frame>
Thread 0x00007...:
File "/usr/lib/python3.10/threading.py", line 324 in wait
...
File "/usr/lib/python3.10/site-packages/torch/autograd/__init__.py", line 266 in backward
My Question
I’m still new to CUDA programming and PyTorch internals, so I’m not sure:
Why might this segmentation fault occur?
Am I doing something wrong when moving data to the GPU?
Is there a safer or more proper way to handle tensors before calling .backward()?
Any help or explanation would be really appreciated. Thank you in advance!