I want to run a simple linear regression. But for some reason, it’s not working correctly.

Linear Regression: y=weights*x+bias

```
# Trainings data x
x = Variable(torch.Tensor([[1, 2.0],
[1, 3.0],
[1, 7.0],
[1, 9.0]]))
#x = (x - x.mean()) / x.max()
# True labels y
y = Variable(torch.Tensor([2.0,3.0,7.0,9.0]))
#y = (y - y.mean()) / y.max()
# Weights
weights = Variable(torch.randn(2,1), requires_grad=True)
# Bias
bias = Variable(torch.randn(1), requires_grad=True)
optimizer = torch.optim.Adam([weights, bias], lr=0.00001)
# Actual training
loss_history = []
for i in range(10000):
out = x.mm(weights).add_(bias)
loss = torch.mean((out - y)**2)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_history.append(loss.data[0])
```

Final result:

loss = 0.2546786069869995

weights = (-1.2875, 0.3234) => should be: 0, 1

bias = -0.3301 => should be: 0

Why is the result so far off from the expected result?