I run the following code:
import torch
import torchvision
net = torchvision.models.resnet18()
optimizer = torch.optim.SGD(net.parameters(), lr=1)
lr_sche = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
data = torch.rand(1, 3, 224, 224)
for epoch in range(5):
optimizer.step()
print('Epoch', epoch)
print(lr_sche.get_lr())
lr_sche.step()
print(lr_sche.get_lr())
and get the output:
Epoch 0
[1]
[0.010000000000000002]
Epoch 1
[0.010000000000000002]
[0.0010000000000000002]
Epoch 2
[0.0010000000000000002]
[0.00010000000000000003]
Epoch 3
[0.00010000000000000003]
[1.0000000000000004e-05]
Epoch 4
[1.0000000000000004e-05]
[1.0000000000000004e-06]
I am confused why the “lr” jumped directly from 1 to 0.01? Is this a bug or I used the StepLR in the wrong way?