I’m using stacked Autoencoder, which is a bunch of Conv layers. However, I’m having a tensor mismatch error, and I’m not sure about the reason. Everything done in the Encoder is reversed in the Decoder!

This is for time-series data. Input shape is `(bactch_size, 1, 3000)`

Here’s the code:

```
lass CDAutoEncoder(nn.Module):
def __init__(self, input_size, output_size, kernel, stride):
super(CDAutoEncoder, self).__init__()
self.forward_pass = nn.Sequential(
nn.Conv1d(input_size, output_size, kernel_size=kernel, stride=stride, padding=0),
nn.PReLU(),
)
self.backward_pass = nn.Sequential(
nn.ConvTranspose1d(output_size, input_size, kernel_size=kernel, stride=stride, padding=0),
nn.PReLU(),
)
def forward(self, x):
y = self.forward_pass(x)
return y
def reconstruct(self, x):
return self.backward_pass(x)
class StackedAutoEncoder(nn.Module):
def __init__(self):
super(StackedAutoEncoder, self).__init__()
self.ae1 = CDAutoEncoder(1, 32, 50, 10)
self.ae2 = CDAutoEncoder(32, 64, 10, 3)
self.ae3 = CDAutoEncoder(64, 64, 5, 1)
def forward(self, x):
a1 = self.ae1(x)
a2 = self.ae2(a1)
a3 = self.ae3(a2)
return self.reconstruct(a3)
def reconstruct(self, x):
a2_reconstruct = self.ae3.reconstruct(x)
a1_reconstruct = self.ae2.reconstruct(a2_reconstruct)
x_reconstruct = self.ae1.reconstruct(a1_reconstruct)
return x_reconstruct
```

The error:

`RuntimeError: The size of tensor a (2990) must match the size of tensor b (3000) at non-singleton dimension 2`

I’ve tried adding padding and it worked, but when I changed the kernel size I get different tensor-size-mismatch-error. Also, same error appears if I tried to add `AvgPool1d(2)`

layer … I use `nn.Upsample(scale_factor=2)`

in the decoder, but same mismatch error appears.

Apparently, there’s nothing like ‘same’ padding, so is there automated solution for this?