I’m trying to convert a MMD-VAE implementation from TensorFlow to PyTorch. I’ve got most of the model built just fine but I just want to make sure that I am converting the following functions correctly (Everything is working but I’m not getting the results I expect so I thought maybe I am computing the kernel incorrectly as I am not so strong in TensorFlow).

**In TensorFlow**:

```
def compute_kernel(x, y):
x_size = tf.shape(x)[0]
y_size = tf.shape(y)[0]
dim = tf.shape(x)[1]
tiled_x = tf.tile(tf.reshape(x, tf.stack([x_size, 1, dim])), tf.stack([1, y_size, 1]))
tiled_y = tf.tile(tf.reshape(y, tf.stack([1, y_size, dim])), tf.stack([x_size, 1, 1]))
return tf.exp(-tf.reduce_mean(tf.square(tiled_x - tiled_y), axis=2) / tf.cast(dim, tf.float32))
```

**And what I have for PyTorch**:

```
def compute_kernel(x, y):
x_size = x.size(0)
y_size = y.size(0)
dim = x.size(1)
x = x.unsqueeze(1) # (x_size, 1, dim)
y = y.unsqueeze(0) # (1, y_size, dim)
tiled_x = x.expand(x_size, y_size, dim)
tiled_y = y.expand(x_size, y_size, dim)
kernel_input = (tiled_x - tiled_y).pow(2).mean(2)/float(dim)
return torch.exp(-kernel_input)
```

Thanks for your help!!