Good morning,
I’m translating code from TensorFlow to PyTorch. There is a function in TF, unique_with_counts
, that I can best explain with the example from the TF documentation tf.unique_with_counts | TensorFlow v2.12.0
import tensorflow as tf
x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8], tf.float32)
print('\n' + 'x: ')
print(x)
unique_vals, unique_idxs, unique_val_counts = tf.unique_with_counts(x)
print('\n' + 'unique_vals: ')
print(unique_vals)
print('\n' + 'unique_idxs: ')
print(unique_idxs)
print('\n' + 'unique_val_counts: ')
print(unique_val_counts)
output:
x:
tf.Tensor([1. 1. 2. 4. 4. 4. 7. 8. 8.], shape=(9,), dtype=float32)
unique_vals:
tf.Tensor([1. 2. 4. 7. 8.], shape=(5,), dtype=float32)
unique_idxs:
tf.Tensor([0 0 1 2 2 2 3 4 4], shape=(9,), dtype=int32)
unique_val_counts:
tf.Tensor([2 1 3 1 2], shape=(5,), dtype=int32)
What is the best way to replicate this function in PyTorch?