I have a np.array of type uint8 of face images as input. Then I create two different transforms and apply them to the input. However, I encounter some problems with the dataloader:
The output size is not what I expected. It is 3136 regardless of whether I use augmentation or not.
train_data = torch.from_numpy(train_data)
train_data = rearrange(train_data, 'b h w c -> b c h w')
transform1 = T.Compose([
T.TrivialAugmentWide(),
lambda x : x.float(),
T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform2 = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
train_dataset = ConcatDataset(datasets=[
CustomDataset(data = train_data, labels = train_lab, transforms=transform1),
CustomDataset(data = train_data, labels = train_lab, transforms=transform2)
])
train_dataloader = DataLoader(train_dataset, batch_size=parameters['batch_size'], sampler=sampler)