I am computing loss using the fft, i have worked with numpy.fft.fft before. I am not able to understand the use of “signal_ndim”
for example : I created a numpy array
x = np.arange(30)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29])
then i also made a torch tensor of it and pushed on gpu
y = torch.tensor(x, requires_grad=True, dtype=torch.float64, device=device)
y = tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13.,
14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27.,
28., 29.], device=‘cuda:0’, dtype=torch.float64, requires_grad=True)
now when i do numpy fft
i get this : np.fft.fft(x)
output : array([435.+0.00000000e+00j, -15.+1.42715467e+02j, -15.+7.05694516e+01j,
-15.+4.61652531e+01j, -15.+3.36905516e+01j, -15.+2.59807621e+01j,
-15.+2.06457288e+01j, -15.+1.66591877e+01j, -15.+1.35060607e+01j,
-15.+1.08981379e+01j, -15.+8.66025404e+00j, -15.+6.67843028e+00j,
-15.+4.87379544e+00j, -15.+3.18834843e+00j, -15.+1.57656353e+00j,
-15.+1.77635684e-15j, -15.-1.57656353e+00j, -15.-3.18834843e+00j,
-15.-4.87379544e+00j, -15.-6.67843028e+00j, -15.-8.66025404e+00j,
-15.-1.08981379e+01j, -15.-1.35060607e+01j, -15.-1.66591877e+01j,
-15.-2.06457288e+01j, -15.-2.59807621e+01j, -15.-3.36905516e+01j,
-15.-4.61652531e+01j, -15.-7.05694516e+01j, -15.-1.42715467e+02j])
but when i do torch.fft(y,1) , it gives runtime error
RuntimeError: Given signal_ndim=1, expected an input tensor of at least 2D (complex input adds an extra dimension), but got input=torch.cuda.DoubleTensor[30]
so i reshaped it to torch.reshape(y, (15,2)), now torch.fft(y,1) output
tensor([[210.0000, 225.0000],
[-85.5695, 55.5695],
[-48.6906, 18.6906],
[-35.6457, 5.6457],
[-28.5061, -1.4939],
[-23.6603, -6.3397],
[-19.8738, -10.1262],
[-16.5766, -13.4234],
[-13.4234, -16.5766],
[-10.1262, -19.8738],
[ -6.3397, -23.6603],
[ -1.4939, -28.5061],
[ 5.6457, -35.6457],
[ 18.6906, -48.6906],
[ 55.5695, -85.5695]], device=‘cuda:0’, dtype=torch.float64,
grad_fn=)
if the pass the same matrix to numpy i get different output.
array([[ 1.+0.j, -1.+0.j],
[ 5.+0.j, -1.+0.j],
[ 9.+0.j, -1.+0.j],
[13.+0.j, -1.+0.j],
[17.+0.j, -1.+0.j],
[21.+0.j, -1.+0.j],
[25.+0.j, -1.+0.j],
[29.+0.j, -1.+0.j],
[33.+0.j, -1.+0.j],
[37.+0.j, -1.+0.j],
[41.+0.j, -1.+0.j],
[45.+0.j, -1.+0.j],
[49.+0.j, -1.+0.j],
[53.+0.j, -1.+0.j],
[57.+0.j, -1.+0.j]])
can someone please explain this to me…