Not sure this is the case for you, but in my case I was using autocast and GradScaler. I had both set to enabled=False. According to the docs this should mean these should have no effect, which was in fact the case with a single GPU and using DP.
However, with DDP I found that introducing these increased variance in the training and validation loss significantly, deteriorating model accuracy overall. According to the docs autocast and GradScaler shouldn’t adversely affect DDP, but it did just that in my case. Not sure why, but I assume it has to do with gradient synchronization in DDP.