I have this model:
class PriorBox4JIT(torch.nn.Module):
def __init__(self, cfg):
super(PriorBox4JIT, self).__init__()
self.cfg=cfg
self.idf = torch.nn.Identity()
def forward(self,image_size):
self_min_sizes = self.cfg['min_sizes']
self_steps = self.cfg['steps']
self_clip = self.cfg['clip']
self_image_size = image_size
self_feature_maps = self_image_size[1].to(dtype=torch.int64).tolist()
self_name = "s"
anchors = []
for k, f in enumerate(self_feature_maps):
min_sizes = self_min_sizes[k]
for i, j in product(range(f[0]), range(f[1])):
for min_size in min_sizes:
s_kx = min_size / self_image_size[0][1].item()
s_ky = min_size / self_image_size[0][0].item()
dense_cx = [x * self_steps[k] / self_image_size[0][1].item() for x in [j + 0.5]]
dense_cy = [y * self_steps[k] / self_image_size[0][0].item() for y in [i + 0.5]]
for cy, cx in product(dense_cy, dense_cx):
anchors += [cx, cy, s_kx, s_ky]
# back to torch land
output = torch.Tensor(anchors).view(-1, 4)
if self_clip:
output.clamp_(max=1, min=0)
return output
I pass inputs in vanilla mode (i.e no tracing) like so:
priorbox_jit = PriorBox4JIT(cfg)
inp0=torch.Tensor([im_height, im_width])
inp1=torch.Tensor( [ [ceil(im_height/step), ceil(im_width/step)] for step in cfg['steps'] ] )
inputs=(inp0, inp1)
priors_jit = priorbox_jit( inputs )
prior_data_jit = priors_jit.data
print("prior_data_jit.shape", prior_data_jit.shape)
and this returns me what I expect: prior_data_jit.shape torch.Size([8142, 4])
However, when I try to trace the same model like so:
traced_script_module2 = torch.jit.trace(priorbox_jit.eval(), inputs )
I get thrown an error:
TypeError: forward() takes 2 positional arguments but 3 were given
I am confused why this is - it seems to do the forward() correctly when I do not traceā¦
Any pointers would be great