Unable to export model to ONNX model

When I tried to export my trained pytorch model to ONNX format, I encounter the error: Cannot insert a Tensor that requires grad as a constant. Consider making it a parameter or input, or detaching the gradient

After searching on board, I found multiple cases that results in same error, but I didn’t find a solution suitable for my case.

Here is my code:

# Define a function: input raw data => preprocessing & model inference => prediction
from PIL import Image
# Preprocess image for PyTorch data architecture
from torchvision import transforms

data_preprocess = transforms.Compose([
      transforms.Normalize(0.456, 0.225)

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def process_for_model(img):
  Process image array for PyTorch model
  img: input tensor of an image
  return: Tensor image prepared to input to the model
  #img = Image.fromarray(img).convert('RGB')
  img = data_preprocess(img) # remember to do data preprocessing as in the training stage!! This strongly influence the testing performance
  img = img.to(device)
  img = img.view(1, 3, 889, 929)

  return img

def pipeline(input_batch, preprocess, inference):
  processed_data = preprocess(input_batch)
  output = inference(processed_data)
  return output

def final_pipeline(input_batch):
  prediction = pipeline(input_batch)
  return prediction

class mypipeline(torch.nn.Module):
  def __init__(self):

  def forward(self, input_batch):
    input_batch = input_batch.cpu().detach().numpy().astype(np.float32)
    processed_data = process_for_model(input_batch)
    print("processed data:", processed_data)
    self.output = pre_model(processed_data).cpu().detach()
    return self.output

input_shape = (889, 929, 3)
dummy_input = torch.randint(0, 255, size = (889, 929, 3), device = torch.device("cuda:0"))
pipeline = mypipeline()

with torch.no_grad():
         verbose = False,        

I’ve numpy array in the workflow, which I’m not sure if it would be the cause of problem.
Any advice is appreciated, thank you!