Unexpected data error in the ms coco dataset: ValueError("All bounding boxes should have positive height and width."

I am using Torchvision FasterRCNN to apply object detection in the MS Coco dataset. I am using the instance_train2017.json annotation file.
My code for loading the dataloader is;

    # selected class ids: extract class id from the annotation
    coco_data_args = {'datalist':im_ids, 'coco_interface':coco_interface, 'coco_classes_idx':selected_class_ids,'stage':'train', 'adjusted_classes_idx':adjusted_class_ids}
    coco_data = COCOData(**coco_data_args)
    coco_dataloader_args = {'batch_size':Hyper.batch_size, 'shuffle':True}
    coco_dataloader = data.DataLoader(coco_data, **coco_dataloader_args)
    print(f"Size of the dataloader = {len(coco_dataloader)}")
    step = 0
    # initilze model, loss, etc
    fasterrcnn_args = {'num_classes':81, 'min_size':512, 'max_size':800}
    fasterrcnn_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False,**fasterrcnn_args)

The code where I execute the fasterrcnn model is;

      for _, b in enumerate(coco_dataloader):
            i += 1
            if i % 100 == 0:
                print(f"step {i}")
            X,y = b
            if Constants.device==T.device('cuda'):
                X = X.to(Constants.device)
                y['labels'] = y['labels'].to(Constants.device)
                y['boxes'] = y['boxes'].to(Constants.device)
            images = [im for im in X]
            targets = []
            # THIS IS IMPORTANT!!!!!
            # get rid of the first dimension (batch)
            # IF you have >1 images, make another loop
            # Pytorch is sensitive to formats. Labels must be int64, bboxes float32, masks uint8
            lab['boxes'] = y['boxes'].squeeze_(0)
            lab['labels'] = y['labels'].squeeze_(0)
            # avoid empty objects
            if len(targets)>0:
                loss = fasterrcnn_model(images, targets)
                total_loss = 0
                for k in loss.keys():
                    total_loss += loss[k]

                epoch_loss += total_loss.item()

and it is falling over on this line in the above code; loss = fasterrcnn_model(images, targets)

The error I get is;

Traceback (most recent call last):
  File "U:/705/cwk/mscoco/src/main.py", line 28, in <module>
  File "U:/705/cwk/mscoco/src/main.py", line 17, in main
  File "U:\705\cwk\mscoco\src\train.py", line 103, in train
    loss = fasterrcnn_model(images, targets)
  File "C:\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "C:\Anaconda3\lib\site-packages\torchvision\models\detection\generalized_rcnn.py", line 92, in forward
    raise ValueError("All bounding boxes should have positive height and width."
ValueError: All bounding boxes should have positive height and width. Found invalid box [11.898031234741211, 225.0413055419922, 18.502750396728516, 225.0413055419922] for target at index 0.

Process finished with exit code 1

I am really surprised this is happening, I do not expect data problems from MS Coco. Is there a problem in the code? How do I fix this?

Based on the error it seems that this particular bounding box has a width of 0, so you might want to filter out these images.

Thank you, I didn’t think that would happen with the coco dataset, but that must be the solution