Hi,
I don’t know what has happened that my current PyTorch installation (from a year ago) doesn’t use GPU anymore. Apparently, it says the CUDA-11.6 is no longer supported. That should happen if I have updated the installation which as far as I remember, I didn’t do that.
$ python3 -c "import torch; print(torch.__version__)"
2.2.2+cu121
$ nvidia-smi
Tue Jun 18 15:22:00 2024
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.39.01 Driver Version: 510.39.01 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+
...
$ python3 -m torch.utils.collect_env
/usr/lib/python3.8/runpy.py:127: RuntimeWarning: 'torch.utils.collect_env' found in sys.modules after import of package 'torch.utils', but prior to execution of 'torch.utils.collect_env'; this may result in unpredictable behaviour
warn(RuntimeWarning(msg))
Collecting environment information...
/home/mahmood/.local/lib/python3.8/site-packages/torch/cuda/__init__.py:141: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11060). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)
return torch._C._cuda_getDeviceCount() > 0
PyTorch version: 2.2.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.3 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.16.3
Libc version: glibc-2.31
Python version: 3.8.10 (default, Nov 22 2023, 10:22:35) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.13.0-27-generic-x86_64-with-glibc2.29
Is CUDA available: False
CUDA runtime version: 11.6.55
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080
Nvidia driver version: 510.39.01
cuDNN version: Probably one of the following:
/usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-11.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-11.6/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 43 bits physical, 48 bits virtual
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 113
Model name: AMD Ryzen 7 3700X 8-Core Processor
Stepping: 0
Frequency boost: enabled
CPU MHz: 2147.247
CPU max MHz: 4426.1709
CPU min MHz: 2200.0000
BogoMIPS: 7199.68
Virtualization: AMD-V
L1d cache: 256 KiB
L1i cache: 256 KiB
L2 cache: 4 MiB
L3 cache: 32 MiB
NUMA node0 CPU(s): 0-15
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, STIBP conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es
Versions of relevant libraries:
[pip3] flake8==7.0.0
[pip3] numpy==1.23.5
[pip3] numpydoc==0.7.0
[pip3] onnx==1.16.0
[pip3] onnx-graphsurgeon==0.3.27
[pip3] onnxruntime==1.16.3
[pip3] torch==2.2.2
[pip3] torchtext==0.9.0a0+1ac252b
[pip3] torchvision==0.9.0a0+af97ec2
[pip3] triton==2.2.0
[conda] Could not collect
As you can see Is CUDA available: False
, so I want to know is there any way to fix that without CUDA update?