ValueError: Target size (torch.Size([16])) must be the same as input size (torch.Size([16, 1]))

ValueError                                Traceback (most recent call last)
<ipython-input-30-33821ccddf5f> in <module>
     23         output = model(data)
     24         # calculate the batch loss
---> 25         loss = criterion(output, target)
     26         # backward pass: compute gradient of the loss with respect to model parameters
     27         loss.backward()

C:\Users\mnauf\Anaconda3\envs\federated_learning\lib\site-packages\torch\nn\modules\ in __call__(self, *input, **kwargs)
    487             result = self._slow_forward(*input, **kwargs)
    488         else:
--> 489             result = self.forward(*input, **kwargs)
    490         for hook in self._forward_hooks.values():
    491             hook_result = hook(self, input, result)

C:\Users\mnauf\Anaconda3\envs\federated_learning\lib\site-packages\torch\nn\modules\ in forward(self, input, target)
    593                                                   self.weight,
    594                                                   pos_weight=self.pos_weight,
--> 595                                                   reduction=self.reduction)

C:\Users\mnauf\Anaconda3\envs\federated_learning\lib\site-packages\torch\nn\ in binary_cross_entropy_with_logits(input, target, weight, size_average, reduce, reduction, pos_weight)
   2074     if not (target.size() == input.size()):
-> 2075         raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
   2077     return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)

ValueError: Target size (torch.Size([16])) must be the same as input size (torch.Size([16, 1]))

I am working on the Horses vs humans dataset. This is my code. I am using criterion = nn.BCEWithLogitsLoss() and optimizer = optim.RMSprop(model.parameters(), lr=0.01). My final layer is self.fc2 = nn.Linear(512, 1) with softmax activation function applying on it.

16 is the batch size. Since the error says ValueError: Target size (torch.Size([16])) must be the same as input size (torch.Size([16, 1])). I don’t understand, where do I need to make change, to rectify the error.

target = target.unsqueeze(1), before passing target to criterion, changed the target tensor size from [16] to [16,1]. Doing it solved the issue. Furthermore, I also needed to do target = target.float() before passing it to criterion, because our outputs are in float. Besides, there was another error in the code. I was using sigmoid activation function in the last layer, but I shouldn’t because the criterion I am using already comes with sigmoid builtin.