ValueError: too many dimensions ‘str’ when trying to train model

Traceback:

Traceback (most recent call last):
  File "c:\Users\Philip Chen\Documents\AICrowd\amazon-kdd-cup-2024-starter-kit\models\QnAModel.py", line 83, in <module>
    trainer.train()
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\trainer.py", line 1859, in train
    return inner_training_loop(
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\trainer.py", line 2165, in _inner_training_loop
    for step, inputs in enumerate(epoch_iterator):
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\accelerate\data_loader.py", line 454, in __iter__
    current_batch = next(dataloader_iter)
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\utils\data\dataloader.py", line 631, in __next__
    data = self._next_data()
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\utils\data\dataloader.py", line 675, in _next_data
    data = self._dataset_fetcher.fetch(index)  # may raise StopIteration
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\utils\data\_utils\fetch.py", line 54, in fetch
    return self.collate_fn(data)
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\data\data_collator.py", line 92, in default_data_collator
    return torch_default_data_collator(features)
  File "C:\Users\Philip Chen\AppData\Local\Programs\Python\Python310\lib\site-packages\transformers\data\data_collator.py", line 141, in torch_default_data_collator
    batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
ValueError: too many dimensions 'str'

Offending line:

trainer.train()

And my code (modified from here: Fine-tune a pretrained model)

import datasets as ds
import pandas as pd
import transformers as tf
import evaluate
import numpy as np


myData=pd.read_json("labels.json", lines=True)

inputField=myData["input_field"]
taskType=myData["task_type"]
outputField=myData["output_field"]
isMCQ=myData["is_multiple_choice"]

qArr=[]
aArr=[]

for i in range (len(myData)):
    if isMCQ[i]==False:
        if taskType[i] == "generation":
            qArr.append(inputField[i])
            aArr.append(outputField[i])

trainDF = pd.DataFrame({
     "label" : aArr,
     "text" : qArr,
})

testDF = pd.DataFrame({
    
     "label" : aArr,
     "text" : qArr,
})

trainDS = ds.Dataset.from_dict(trainDF)
testDS = ds.Dataset.from_dict(testDF)
myDataSetDict=ds.DatasetDict({"train": trainDS, "test":testDS})
print(myDataSetDict)

tokenizer = tf.AutoTokenizer.from_pretrained("google-bert/bert-base-cased")

def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

tokenizedDatasets = myDataSetDict.map(tokenize_function, batched=True)
print(type(tokenizedDatasets))
small_train_dataset = tokenizedDatasets["train"].shuffle(seed=42).select(range(10))
small_eval_dataset = tokenizedDatasets["test"].shuffle(seed=42).select(range(10))

model = tf.AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)

metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)

training_args = tf.TrainingArguments(
        output_dir='./',          # output directory
        num_train_epochs=10,                     # total number of training epochs
        warmup_steps=500,                       # number of warmup steps for learning rate scheduler
        weight_decay=0.01,                      # strength of weight decay
        logging_dir='./logs',                   # directory for storing logs
        logging_steps=10,
    )


print(f"TokenizedDataset Type: {type(tokenizedDatasets)}")
trainer = tf.Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,
    eval_dataset=small_eval_dataset,
    compute_metrics=compute_metrics,
)


trainer.train()

Did I do something wrongly?