Very bad performance even by using cuda!

I am a newbie to pytorch and I am facing performance issue
Below is my code:

import torchvision
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import as data_utils
import torch.nn.init as init
from torch.autograd import Variable

print("OS: ", sys.platform)
print("Python: ", sys.version)
print("PyTorch: ", torch.__version__)
print("Numpy: ", np.__version__)
print("GPU: ", get_gpu_name())
print("CuDNN Version ", get_cudnn_version())

#I'm running in google colab
#OS:  linux
#Python:  3.6.7 (default, Oct 22 2018, 11:32:17) 
#[GCC 8.2.0]
#PyTorch:  1.1.0
#Numpy:  1.16.3
#GPU:  ['Tesla T4']
#CUDA Version 10.0.130
#CuDNN Version  7.5.1

#getting the data

x_train, x_test, y_train, y_test = cifar_for_library(channel_first = True)
#cifar_for_library is from common

class create_pytorch_model(nn.Module):
    def __init__(self, n_classes=N_CLASSES):
        super(create_pytorch_model, self).__init__()
        self.conv1 = nn.Conv2d(3, 50, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(50, 50, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(50, 100, kernel_size=3, padding=1)
        self.conv4 = nn.Conv2d(100, 100, kernel_size=3, padding=1)
        # feature map size is 8*8 by pooling
        self.fc1 = nn.Linear(100*8*8, 512)
        self.fc2 = nn.Linear(512, n_classes)

    def forward(self, x):
        # PyTorch requires a flag for training in dropout
        x = self.conv2(F.relu(self.conv1(x)))
        x = F.relu(F.max_pool2d(x, kernel_size=2, stride=2))
        x = F.dropout(x, 0.25,

        x = self.conv4(F.relu(self.conv3(x)))
        x = F.relu(F.max_pool2d(x, kernel_size=2, stride=2))
        x = F.dropout(x, 0.25,

        x = x.view(-1, 100*8*8)   # reshape Variable
        x = F.dropout(F.relu(self.fc1(x)), 0.5,
        return self.fc2(x)

pytorch_model  = create_pytorch_model().cuda()

optimizer = optim.SGD(pytorch_model.parameters(), lr, momentum)
criterion = nn.CrossEntropyLoss()

for j in range(10):
    for data, target in yield_mb(x_train, y_train, BATCHSIZE, shuffle=True):
        data = Variable(torch.FloatTensor(data).cuda())
        target = Variable(torch.LongTensor(target).cuda())
        output = sym(data)
        loss = criterion(output, target)
    print('Epoch %d' % (j))

Link to my full code(jupyter notebook)
Link to my full code(.py file)

It took 2 mins 15 secs to train with cuda.
While mxnet takes only 40 secs to train with using same data and same data loader.

This makes pytorch 3x slower than mxnet!!!

What am I doing wrong?:fearful::fearful::fearful:

Or is this normal?

Any suggestion would be very appreciated.

1 Like

Hi there!

I don’t see any real faults in your code (you don’t need to wrap your tensors in Variable(…) ) and can’t explain the big difference in performance.

One thing that does speed up pytorch performance is this line, but it adds some overhead during the first few batches so is more useful for longer trainings.

torch.backends.cudnn.benchmark = True # Optimizes cudnn

Best of luck :slight_smile:

Thanks a gazillion times, I’ve now improved the performance by 7 secs. But it still is 3x slower than mxnet.