Very simple LSTM doesn't seem to learn anything

I’m using Dataset, and I have:

    def __getitem__(self, index):
        random_tensor = torch.rand(self.seq_length, self.feature_dim) * 2
        random_tensor = random_tensor - 0.5

        return random_tensor, random_tensor * 2

So all I’m doing is learning how to multiply a tensor by 2.

My model is:

class BaselineModel(nn.Module):
    def __init__(self, feature_dim=1, hidden_size=1, num_layers=2):
        super(BaselineModel, self).__init__()
        self.num_layers = num_layers
        self.hidden_size = hidden_size

        self.lstm = nn.LSTM(input_size=feature_dim,
                            hidden_size=hidden_size, num_layers=num_layers)

    def forward(self, x, hidden):
        lstm_out, hidden = self.lstm(x, hidden)
        return lstm_out, hidden

    def init_hidden(self, batch_size):
        hidden = torch.zeros(2, 1, 1)
        cell = torch.zeros(2, 1, 1)
        return (hidden, cell)

So basically, a simple 1 cell, 1 dimension LSTM. My training loop is:

    model = BaselineModel(feature_dim=FEATURE_DIM, hidden_size=FEATURE_DIM)
    optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0.0001)
    loss_fn = torch.nn.MSELoss(reduction='sum')

    for epoch in range(250):
        model.train(True)  # Set model to training mode

        running_loss = 0.0

        for i, data in enumerate(data_loaders['train']):
            hidden = model.init_hidden(13)
            inputs = data[0]
            outputs = data[1]

            pred, hidden = model(inputs, hidden)

            loss = loss_fn(pred, outputs)

            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)


            running_loss +=

        epoch_loss = running_loss / len(data_loaders['train'])
        wandb.log({"Training Loss": epoch_loss})
        print('Epoch: {}\tLoss: {:.4f}'.format(epoch, epoch_loss))

However this doesn’t really decrease the LOSS. Starts at 0.9490 and after 250 epochs, stays at 0.92. I realize that an LSTM is overkill for this, but I want to get a VERY basic version working before augmenting with my sequence data