Can someone please explain how the weights are being intialised here? How do I set the weights using manual seed or so, so that I can reproduce the same intialisation later?
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes, KaimingInit=False):
self.inplanes = 16
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 16, layers[0])
self.layer2 = self._make_layer(block, 32, layers[1], stride=2)
self.layer3 = self._make_layer(block, 64, layers[2], stride=2)
self.layer4 = self._make_layer(block, 128, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.middle_fc1 = nn.Linear(16* block.expansion, 2)
self.middle_fc2=nn.Linear(32* block.expansion, 2)
self.middle_fc3=nn.Linear(64* block.expansion, 2)
self.classifier = nn.Linear(128 * block.expansion, 2)
if KaimingInit == True:
print('Using Kaiming Initialization.')
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
#print(x.size())
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
#print(x.size())
x = self.layer1(x)
# middle_output1 = torch.flatten(middle_output1, 1)
middle_output1=self.avgpool(x).view(x.size()[0], -1)
middle_output1 = self.middle_fc1(middle_output1)
#print(x.size())
x = self.layer2(x)
middle_output2=self.avgpool(x).view(x.size()[0], -1)
middle_output2 = self.middle_fc2(middle_output2)
#print(x.size())
x = self.layer3(x)
middle_output3=self.avgpool(x).view(x.size()[0], -1)
middle_output3 = self.middle_fc3(middle_output3)
#print(x.size())
x = self.layer4(x)
#print(x.size())
x = self.avgpool(x).view(x.size()[0], -1)
#print(x.shape)
out = self.classifier(x)
#print(out.shape)
return middle_output1,middle_output2,middle_output3,out,x
def eca_resnet18():
model = ResNet(ECABasicBlock, [2, 2, 2, 2], 2)
return model
def eca_resnet34():
model = ResNet(ECABasicBlock, [3, 4, 6, 3], 2)
return model