WeightedRandomSampler has no effect

Dear all,
I have an imbalanced dataset for training which I have used WeightedRandomSampler for train, dev_train and test separately:

  class_weights=[1,112/75,112/32] # class 0 (112), class 1 (75)  class 2 (32) 
  train_sample_weights=[0]*len(datasets_list['train'])                     #172
  dev_train_sample_weights=[0]*len(datasets_list['dev_train'])     #21
  test_sample_weights=[0]*len(datasets_list['test'])                       #26
  
  from torch.utils.data import WeightedRandomSampler
  for idx, data in enumerate(datasets_list['train']):
      label=data['label']
      class_weight=class_weights[label]
      train_sample_weights[idx]=class_weight
  sampler_train=WeightedRandomSampler(train_sample_weights,num_samples=len(train_sample_weights),replacement=True)
  
  for idx, data in enumerate(datasets_list['dev_train']):
      label=data['label']
      class_weight=class_weights[label]
      dev_train_sample_weights[idx]=class_weight
  sampler_dev_train=WeightedRandomSampler(dev_train_sample_weights,num_samples=len(dev_train_sample_weights),replacement=True)

  for idx, data in enumerate(datasets_list['test']):
      label=data['label']
      class_weight=class_weights[label]
      test_sample_weights[idx]=class_weight
  sampler_test=WeightedRandomSampler(test_sample_weights,num_samples=len(test_sample_weights),replacement=True)


  datasets_list={}
  for group in dict_expl_MCclassifier_training.keys():  #created with all the data from 3 classes 
  
     if group =='train':
  
      datasets_list[group] = tio.SubjectsDataset(dict_expl_MCclassifier_training[group], transform=transform_train)
      
     else:
      
      datasets_list[group] = tio.SubjectsDataset(dict_expl_MCclassifier_training[group], transform=transform_dev)


  dataloaders_glaucoma_training_MCclassifier={'train': DataLoader(dataset=datasets_list['train'], batch_size=10,sampler= sampler_train, num_workers=8),
               'dev_train': DataLoader(dataset=datasets_list['dev_train'], batch_size=10,sampler=sampler_dev_train, num_workers=8),
               'test': DataLoader(dataset=datasets_list['test'], batch_size=10,sampler=sampler_test, num_workers=8)}

The problem is after testing the trained model, I can see data from class 1 and 2 are misclassified as class 0(the largest class).
So apparently the weightedsampler has not worked properly but how can I make sure if the weightedsampler is the problem?
p.s.:when I manually and randomly selected similar number of data from 3 classes the classifier is working much better