Hello, when I run the following code I found although the mode and input are same,the predictions are different.
!pip install efficientnet_pytorch -q
import torch
import torch.nn as nn
import efficientnet_pytorch as efn
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
model = efn.EfficientNet.from_name('efficientnet-b0')
model = model.to(device)
img = torch.ones((2, 3, 680, 680))*0.5
img = img.to(device)
preds1 = model(img)
preds2 = model(img)
preds3 = model(img)
print(preds1[0][0])
print(preds2[0][0])
print(preds3[0][0])
del model, img, preds1, preds2, preds3
These are outputs.
tensor(0.2599, grad_fn=<SelectBackward>)
tensor(0.1364, grad_fn=<SelectBackward>)
tensor(0.1263, grad_fn=<SelectBackward>)
Do you know why this happens? Thank you for clarificaton.