Why my model is such a failure?

i am trying to segmentat vessels on DRIVE database, and when i run unet , that is what i am gitting
44

class double_conv(nn.Module):
    '''(conv => BN => ReLU) * 2'''
    def __init__(self, in_ch, out_ch):
        super(double_conv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        x = self.conv(x)
        return x


class inconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(inconv, self).__init__()
        self.conv = double_conv(in_ch, out_ch)

    def forward(self, x):
        x = self.conv(x)
        return x
class down(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(down, self).__init__()
        self.mpconv = nn.Sequential(
            nn.MaxPool2d(2),
            double_conv(in_ch, out_ch)
        )

    def forward(self, x):
        x = self.mpconv(x)
        return x


class up(nn.Module):
    def __init__(self, in_ch, out_ch, bilinear=True):
        super(up, self).__init__()

        #  would be a nice idea if the upsampling could be learned too,
        #  but my machine do not have enough memory to handle all those weights
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        else:
            self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2)

        self.conv = double_conv(in_ch, out_ch)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        diffX = x1.size()[2] - x2.size()[2]
        diffY = x1.size()[3] - x2.size()[3]
        x2 = F.pad(x2, (diffX // 2, int(diffX / 2),
                        diffY // 2, int(diffY / 2)))
        x = torch.cat([x2, x1], dim=1)
        x = self.conv(x)
        return x
class outconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(outconv, self).__init__()
        self.conv = nn.Conv2d(in_ch, out_ch, 1)

    def forward(self, x):
        x = self.conv(x)
        return x

class UNet_model(nn.Module):
    def __init__(self, n_channels, n_classes):
        super(UNet_model, self).__init__()
        self.inc = inconv(n_channels, 64)
        self.down1 = down(64, 128)
        self.down2 = down(128, 256)
        self.down3 = down(256, 512)
        self.down4 = down(512, 512)
        self.up1 = up(1024, 256)
        self.up2 = up(512, 128)
        self.up3 = up(256, 64)
        self.up4 = up(128, 64)
        self.outc = outconv(64, n_classes)

    def weight_init(self):
        for i,m in enumerate(self.modules()):
            if isinstance(m,nn.Conv2d):
                nn.init.xavier_normal(m.weight)
                nn.init.constant(m.bias, 0)
    
    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        x = self.outc(x)
        x = F.sigmoid(x)
        return x
model = UNet_model(3,1).cuda()
model.weight_init()
test_res  = model(test_img.cuda())
print(test_res.shape)





class DiceCoeffLoss(nn.Module):
    def __init__(self,smooth=1):
        super(DiceCoeffLoss, self).__init__()
        self.smooth = smooth
    
    def forward(self,input, target):
        iflat = input.view(-1)
        tflat = target.view(-1)
        intersection = (iflat * tflat).sum()
        return 1 - ((2. * intersection + self.smooth) / (iflat.sum() + tflat.sum() + self.smooth))


this is the model i am using