Why the same tensor data, but different results after calculation

I have built an LSTM net work.But I find when the model is doing prediction,the same tensor data has different outputs.

For example, when the output of the last hidden layer is

tensor([[0.0150],
        [0.0150],
        [0.0150],
        [0.0150],
        [0.0151],
        [0.0151],
        [0.0151],
        [0.0151],
        [0.0152],
        [0.0152],
        [0.0152],
        [0.0152],
        [0.0153],
        [0.0153],
        [0.0153],
        [0.0153]])

The predicted result is

tensor([[-0.1035],
        [-0.1035],
        [-0.1035],
        [-0.1035],
        [-0.1035],
        [-0.1035],
        [-0.1036],
        [-0.1036],
        [-0.1036],
        [-0.1036],
        [-0.1036],
        [-0.1036],
        [-0.1036],
        [-0.1036],
        [-0.1036],
        [-0.1036]])

The sixth input and the seventh input are both 0.0151, but their output is different.

I really don’t know what causes the different outputs.

Wish for your help.

The complete code is as follows.

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
timesteps = 10;
L = 1;

batch_size = 16;
Epoch = 1;
timespaces=np.linspace(0,10,50000);

data=np.sin(timespaces * 10);
data=np.reshape(data, (-1, 1));

plt.plot(timespaces, data)
plt.show()
train_len=(int)(len(data) * 0.6);

train_data=data[:train_len]; # (30000, 1)
test_data=data[train_len:]; # (20000, 1)

print(train_data.shape);
print(test_data.shape);

plt.plot(timespaces[:train_len],train_data);
plt.plot(timespaces[train_len:],test_data);
plt.show();
def divide(data,timesteps,L):
    X,Y=[],[];
    
    for i in range(len(data) - timesteps):
        
        x = data[i:i+timesteps];
        y = data[i+timesteps+L-1];
        
        X.append(x);
        Y.append(y);
        
    return X,Y;

def divide_batch(data,batch_size):
    X = [];
    
    for i in range(len(data)):
        
        if((i + 1) * batch_size - 1 > len(data) - 1):
            break;
            
        x = data[i * batch_size : (i + 1) * batch_size];
        X.append(x);
        
    return X;

train_X,train_Y = divide(train_data,timesteps,L);
test_X,test_Y = divide(test_data,timesteps,L);

train_X = torch.tensor(train_X).to(torch.float32); 
train_Y = torch.tensor(train_Y).to(torch.float32);

print("before:");

print("train_X.shape:");
print(train_X.shape); 

print("train_Y.shape:");
print(train_Y.shape); 

train_X = divide_batch(train_X,batch_size);
train_Y = divide_batch(train_Y,batch_size);

train_X = torch.tensor([item.detach().numpy() for item in train_X] ).to(torch.float32); 
train_Y = torch.tensor([item.detach().numpy() for item in train_Y]).to(torch.float32);

print("after:");

print("train_X.shape:");
print(train_X.shape); 

print("train_Y.shape:");
print(train_Y.shape); 

test_X = torch.tensor(test_X).to(torch.float32);
test_Y = torch.tensor(test_Y).to(torch.float32);

print("before:");

print("test_X.shape:");
print(test_X.shape);

print("test_Y.shape:");
print(test_Y.shape); 

test_X = divide_batch(test_X,batch_size);
test_Y = divide_batch(test_Y,batch_size);

test_X = torch.tensor([item.detach().numpy() for item in test_X] ).to(torch.float32); 
test_Y = torch.tensor([item.detach().numpy() for item in test_Y]).to(torch.float32);

print("after:");

print("test_X.shape:");
print(test_X.shape); 

print("test_Y.shape:");
print(test_Y.shape); 
class LSTM(object):
    def __init__(self,timesteps,batch_size,input_size,hidden_size,output_size):
        self.times = 0;
        
        self.timesteps = timesteps;
        self.batch_size = batch_size;
        
        self.input_size = input_size;
        self.hidden_size = hidden_size;
        self.output_size = output_size;
        
        self.Wfh = torch.tensor([[0.0107]]);
        self.Wfx = torch.tensor([[-0.0069]]);
        self.bf = torch.tensor([0.0126]);
        
        self.Wih = torch.tensor([[-0.0045]]);
        self.Wix = torch.tensor([[-0.0180]]);
        self.bi = torch.tensor([1]);
        
        self.Woh = torch.tensor([[-0.0065]]);
        self.Wox = torch.tensor([[0.0002]]);
        self.bo = torch.tensor([-0.0018]);
        
        self.Wch = torch.tensor([[-0.0039]]);
        self.Wcx = torch.tensor([[0.0162]]);
        self.bc = torch.tensor([0.0202]);
        
        self.Wp = torch.tensor([[-0.0563]]);
        self.bp = torch.tensor([-0.1027]);
        
#         self.Wfh,self.Wfx,self.bf = self.Weight_bias(self.input_size,self.hidden_size);
#         self.Wih,self.Wix,self.bi = self.Weight_bias(self.input_size,self.hidden_size);
#         self.Woh,self.Wox,self.bo = self.Weight_bias(self.input_size,self.hidden_size);
#         self.Wch,self.Wcx,self.bc = self.Weight_bias(self.input_size,self.hidden_size);
        
#         self.Wp = torch.randn(self.hidden_size,self.output_size) * 0.01;
#         self.bp = torch.randn(self.output_size) * 0.01;

        self.f = torch.zeros(self.batch_size,self.hidden_size);
        self.i = torch.zeros(self.batch_size,self.hidden_size);
        self.o = torch.zeros(self.batch_size,self.hidden_size);
        self.ct = torch.zeros(self.batch_size,self.hidden_size);
        
        self.h = torch.zeros(self.batch_size,self.hidden_size);
        self.c = torch.zeros(self.batch_size,self.hidden_size);
        
        self.fList = [];
        self.iList = [];
        self.oList = [];
        self.ctList = [];
        
        self.hList = [];
        self.cList = [];
        
        self.preList=[];
        
        self.fList.append(self.f);
        self.iList.append(self.i);
        self.oList.append(self.o);
        self.ctList.append(self.ct);
        
        self.hList.append(self.h);
        self.cList.append(self.c);
        
        print("__init__:");
        
        print("self.Wfh:");
        print(self.Wfh.shape);
        
        print("self.Wfx:");
        print(self.Wfx.shape);
        
        print("self.bf:");
        print(self.bf.shape);
        
        print("self.Wih:");
        print(self.Wih.shape);
        
        print("self.Wix:");
        print(self.Wix.shape);
        
        print("self.bi:");
        print(self.bi.shape);
        
        print("self.Woh:");
        print(self.Woh.shape);
        
        print("self.Wox:");
        print(self.Wox.shape);
        
        print("self.bo:");
        print(self.bo.shape);
        
        print("self.Wch:");
        print(self.Wch.shape);
        
        print("self.Wcx:");
        print(self.Wcx.shape);
        
        print("self.bc:");
        print(self.bc.shape);
        
        print("self.h:");
        print(self.h.shape);
        
        print("self.c:");
        print(self.c.shape);
        
    def Weight_bias(self,input_size,hidden_size):
        return (torch.randn(hidden_size,hidden_size) * 0.01,
                torch.randn(input_size,hidden_size) * 0.01,
                torch.randn(hidden_size) * 0.01);
        
    def forward(self,x):
        for i in range(self.timesteps):
            self.times += 1;
            
            self.f = self.Sigmoid_forward(self.hList[-1] @ self.Wfh + x[i] @ self.Wfx + self.bf);
            self.i = self.Sigmoid_forward(self.hList[-1] @ self.Wih + x[i] @ self.Wix + self.bi);
            self.o = self.Sigmoid_forward(self.hList[-1] @ self.Woh + x[i] @ self.Wox + self.bo);
            self.ct = self.Tanh_forward(self.hList[-1] @ self.Wch + x[i] @ self.Wcx + self.bc);
                
            self.c = self.f * self.cList[-1] + self.i * self.ct;
            self.h = self.o * self.Tanh_forward(self.c);
                
            self.fList.append(self.f);
            self.iList.append(self.i);
            self.oList.append(self.o);
            self.ctList.append(self.ct);
            
            self.hList.append(self.h);
            self.cList.append(self.c);
        
        print("self.h:");
        print(self.h);
        
        return self.prediction();
        
    def prediction(self):
        pre = self.hList[-1] @ self.Wp + self.bp;
        self.preList.append(pre);
        
        return pre;
    
    def backward(self,x,grad):
        
        self.delta_Wfh,self.delta_Wfx,self.delta_bf = self.Weight_bias(self.input_size,self.hidden_size);
        self.delta_Wih,self.delta_Wix,self.delta_bi = self.Weight_bias(self.input_size,self.hidden_size);
        self.delta_Woh,self.delta_Wox,self.delta_bo = self.Weight_bias(self.input_size,self.hidden_size);
        self.delta_Wch,self.delta_Wcx,self.delta_bc = self.Weight_bias(self.input_size,self.hidden_size);
        
        self.delta_hList = self.init_delta();
        self.delta_cList = self.init_delta();
        
        self.delta_fList = self.init_delta();
        self.delta_iList = self.init_delta();
        self.delta_oList = self.init_delta();
        self.delta_ctList = self.init_delta();
        
        self.delta_hList[-1] = grad;
                                                    
        for k in range(self.times,0,-1):
            self.compute_gate_backward(self,x,k);
            
        self.compute_Weight_bias_backward(self,x);
            
    def init_delta(self):
        X = [];
        
        for i in range(self.times + 1):
            X.append(np.zeros(self.batch_size,self.hidden_size));
            
        return X;
    
    def compute_gate_backward(self,t,x):
        
        f = self.fList[k];
        i = self.iList[k];
        o = self.oList[k];
        ct = self.ctList[k];
        
        h = self.hList[k];
        c = self.cList[k];
        
        c_pre = self.cList[k-1];
        f_for = self.fList[k+1];
        
        delta_hk = self.delta_hList[k];
        
        if(k == self.times):
            delta_ck = delta_hk * o * self.Tanh_backward(c);
        else:
            delta_ck = delta_hk * o * self.Tanh_backward(c) + self.delta_cList[k+1] * f_for;
            
        delta_ctk = delta_ck * i;
        delta_fk = delta_ck * c_pre;
        delta_ik = delta_ck * ct;
        delta_ok = delta_hk * Tanh_forward(c);
        
        delta_hkpre = delta_fk * self.Sigmoid_backward(h @ self.Wfh + x[k-1] @ self.Wfx + self.bf) * self.Wfh + delta_ik * self.Sigmoid_backward(h @ self.Wih + x[k-1] @ self.Wix + self.bi) * self.Wih +delta_ok * self.Sigmoid_backward(h @ self.Woh + x[k-1] @ self.Wox + self.bo) * self.Woh +delta_ctk * self.Tanh_backward(h @ self.Wch + x[k-1] @ self.Wcx + self.bc) * self.Wch;
                    
        self.delta_hList[k-1] = delta_hkpre;
        self.delta_cList[k] = delta_ck;
        
        self.delta_fList[k] = delta_fk;
        self.delta_iList[k] = delta_ik;
        self.delta_oList[k] = delta_ok;
        self.delta_ctList[k] = delta_ctk;
        
    def compute_Weight_bias_backward(self,x):
        
        for t in range (slef.times,0,-1):
            
            delta_Wfh = self.delta_fList[t] * self.Sigmoid_backward(h @ self.Wfh + x[t-1] @ self.Wfx + self.bf) * self.hList[t-1];
            delta_Wfx = self.delta_fList[t] * self.Sigmoid_backward(h @ self.Wfh + x[t-1] @ self.Wfx + self.bf) * x[t];
            delta_bf = self.delta_fList[t] * self.Sigmoid_backward(h @ self.Wfh + x[t-1] @ self.Wfx + self.bf);
            
            delta_Wih = self.delta_iList[t] * self.Sigmoid_backward(h @ self.Wih + x[t-1] @ self.Wix + self.bi) * self.hList[t-1];
            delta_Wix = self.delta_iList[t] * self.Sigmoid_backward(h @ self.Wih + x[t-1] @ self.Wix + self.bi) * x[t];
            delta_bi = self.delta_iList[t] * self.Sigmoid_backward(h @ self.Wih + x[t-1] @ self.Wix + self.bi);
            
            delta_Wch = self.delta_ctList[t] * self.Tanh_backward(h @ self.Wch + x[t-1] @ self.Wcx + self.bc) * self.hList[t-1];
            delta_Wcx = self.delta_ctList[t] * self.Tanh_backward(h @ self.Wch + x[t-1] @ self.Wcx + self.bc) * x[t];
            delta_bc = self.delta_ctList[t] * self.Tanh_backward(h @ self.Wch + x[t-1] @ self.Wcx + self.bc);
            
            delta_Woh = self.delta_oList[t] * self.Sigmoid_backward(h @ self.Woh + x[t-1] @ self.Wox + self.bo) * self.hList[t-1];
            delta_Wox = self.delta_oList[t] * self.Sigmoid_backward(h @ self.Woh + x[t-1] @ self.Wox + self.bo) * x[t];
            delta_bo = self.delta_oList[t] * self.Sigmoid_backward(h @ self.Woh + x[t-1] @ self.Wox + self.bo);
            
            self.delta_Wfh += delta_Wfh;
            self.delta_Wfx += delta_Wfx;
            self.delta_bf += delta_bf;
            
            self.delta_Wih += delta_Wih;
            self.delta_Wix += delta_Wix;
            self.delta_bi += delta_bi;
            
            self.delta_Wch += delta_Wch;
            self.delta_Wcx += delta_Wcx;
            self.delta_bc += delta_bc;
            
            self.delta_Woh += delta_Woh;
            self.delta_Wox += delta_Wox;
            self.delta_bo += delta_bo;
    
    def update(self,lr):
        
        self.Wfh -= self.delta_Wfh * lr;
        self.Wfx -= self.delta_Wfx * lr;
        self.bf -= self.delta_bf * lr;
        
        self.Wih -= self.delta_Wih * lr;
        self.Wix -= self.delta_Wix * lr;
        self.bi -= self.delta_bi * lr;
        
        self.Woh -= self.delta_Woh * lr;
        self.Wox -= self.delta_Wox * lr;
        self.bo -= self.delta_bo * lr;
        
        self.Wch -= self.delta_Wch * lr;
        self.Wcx -= self.delta_Wcx * lr;
        self.bc -= self.delta_bc * lr;
        
    def reset(self):
        self.times = 0;
        
        self.hList = [torch.zeros(self.batch_size,self.hidden_size)];
        self.cList = [torch.zeros(self.batch_size,self.hidden_size)];
        
    def Sigmoid_forward(self,x):
        return 1.0 / (1.0 + torch.exp(-x));

    def Sigmoid_backward(self,x):
        return x * (1 - x);

    def Tanh_forward(self,x):
        return ((torch.exp(x) - torch.exp(-x)) / (torch.exp(x) + torch.exp(-x)));

    def Tanh_backward(self,x):
        return 1 - (self.Tanh_forward(x) * self.Tanh_forward(x));
l = LSTM(timesteps,batch_size,1,1,1);

lr = 0.01;
lossList = [];
for epoch in range(Epoch):
    
    loss = 0;
    
    for i in range(len(train_X)):
        
        x = train_X[i].permute(1, 0, 2);
        
        l.forward(x);   
        
        pre = l.prediction();
        
        print("pre:");
        print(pre);

Hi Xinbai!

The values you think are the same are almost certainly different. By default,
pytorch prints out tensors with four digits, while a float has about seven or
eight digits of precision.

Try torch.set_printoptions (precision = 8) and then print out your
tensors.

Best.

K. Frank

Thank you for your help.

The reason why I ask this question is to compare my handwritten model with calling the function in pytorch, and found that the output of calling the pytorch function is the same, but the output of my model is different. I overlooked the problem of precision.

Thank you again for your help.