Adaptive filtering

Can anyone explain why this ONNX export fails, and whether they can propose a fix. I am doing adaptive filtering. There is a network that predicts a set of filters, one for each batch, then each filter is convolved with the input. I’ve posted an issue on github but i am calling on the community to help me.

    class Localiser(nn.Module):
        def __init__(self, nfeats):
            super(Localiser, self).__init__()
   = nn.Sequential(nn.Conv1d(1,128,3,padding=1),
            self.fc = nn.Linear(128,nfeats)

        def forward(self, x):
            x =
            x = x.flatten(1)
            x = self.fc(x)
            return x

    def adaptive_filter(x, w, padding: int):
        B = x.shape[0]
        w = w.unsqueeze(1)
        x = x.view(1,B,-1)
        x = F.conv1d(x, w, padding=padding, groups=B)
        x = x.view(B,1,-1)
        return x

    class Equalizer(nn.Module):
        def __init__(self, ntaps):
            super(Equalizer, self).__init__()
            self.loc = Localiser(ntaps)
            self.ntaps = ntaps

        def forward(self,x):
            w = self.loc(x)
            x = adaptive_filter(x, w, self.ntaps//2)
            return x

    x1 = torch.randn(4, 1, 1024)
    x2 = torch.randn(8, 1, 512) * 10

    model = Equalizer(13)
    y2 = model(x2)

                      dynamic_axes={'x': [0,2], 'y': [0,2]})