All output image is same

Top row is ground truth and bottom row is result. I don’t know why all of them are same. Some results where slightly different in some iteration. What should I look out for?
2024-03-21_17-37_4
I had successful result from denseNet so I wanted to try resnet and skip connection methods. This is my architecture.

def weights_init(m):
    # Initialize kernel weights with Gaussian distributions
    if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
        if m.bias is not None:
            m.bias.data.zero_()
    elif isinstance(m, nn.ConvTranspose2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
        if m.bias is not None:
            m.bias.data.zero_()
    elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_()
def conv(in_channels, out_channels, kernel_size):
    padding = (kernel_size-1) // 2
    assert 2*padding == kernel_size-1, "parameters incorrect. kernel={}, padding={}".format(kernel_size, padding)
    return nn.Sequential(
          nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=padding,bias=False),
          nn.BatchNorm2d(out_channels),
          nn.ReLU(inplace=True),
        )
def pointwise(in_channels, out_channels):
    return nn.Sequential(
          nn.Conv2d(in_channels,out_channels,1,1,0,bias=False),
          nn.BatchNorm2d(out_channels),
          nn.ReLU(inplace=True),
        )
class ResNetSkipAdd(nn.Module):
    def __init__(self, layers, output_size, in_channels=3, pretrained=True):

        if layers not in [18, 34, 50, 101, 152]:
            raise RuntimeError('Only 18, 34, 50, 101, and 152 layer model are defined for ResNet. Got {}'.format(layers))
        
        super(ResNetSkipAdd, self).__init__()
        self.output_size = output_size
        pretrained_model = models.__dict__['resnet{}'.format(layers)](pretrained=pretrained)
        if not pretrained:
            pretrained_model.apply(weights_init)
        
        if in_channels == 3:
            self.conv1 = pretrained_model._modules['conv1']
            self.bn1 = pretrained_model._modules['bn1']
        else:
            self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(64)
            weights_init(self.conv1)
            weights_init(self.bn1)
        
        self.relu = pretrained_model._modules['relu']
        self.maxpool = pretrained_model._modules['maxpool']
        self.layer1 = pretrained_model._modules['layer1']
        self.layer2 = pretrained_model._modules['layer2']
        self.layer3 = pretrained_model._modules['layer3']
        self.layer4 = pretrained_model._modules['layer4']

        # clear memory
        del pretrained_model

        # define number of intermediate channels
        if layers <= 34:
            num_channels = 512
        elif layers >= 50:
            num_channels = 2048
        self.conv2 = nn.Conv2d(num_channels, 1024, 1)
        weights_init(self.conv2)
        
        kernel_size = 5
        self.decode_conv1 = conv(1024, 1024, kernel_size)
        self.decode_conv2 = conv(1024, 512, kernel_size)
        self.decode_conv3 = conv(512, 256, kernel_size)
        self.decode_conv4 = conv(256, 128, kernel_size)
        self.decode_conv4b = conv(128, 64, kernel_size)
        self.decode_conv5 = conv(64, 32, kernel_size)
        self.decode_conv6 = pointwise(32, 1)
        
        self.upSample =  nn.Upsample(scale_factor=2, mode='nearest')
        weights_init(self.decode_conv1)
        weights_init(self.decode_conv2)
        weights_init(self.decode_conv3)
        weights_init(self.decode_conv4)
        weights_init(self.decode_conv5)
        weights_init(self.decode_conv6)

    def forward(self, x):
        # resnet
        x = self.conv1(x)
        x = self.bn1(x)
        x1 = self.relu(x)
        #print("x1", x1.size())
        x2 = self.maxpool(x1)
        #print("x2", x2.size())
        x3 = self.layer1(x2)
        #print("x3", x3.size())
        x4 = self.layer2(x3)
        #print("x4", x4.size())
        x5 = self.layer3(x4)
        #print("x5", x5.size())
        x6 = self.layer4(x5)
        #print("x6", x6.size())
        x7 = self.conv2(x6)
        #print("x7", x7.size())
        # decoder
        y10 = self.decode_conv1(x7)
        #print("y10", y10.size())
        
        y10 = self.upSample(y10)
        y9 = F.interpolate(y10 + x5, scale_factor=2, mode='nearest')
        #print("y9", y9.size())
        y8 = self.decode_conv2(y9)
        #print("y8", y8.size())
        y7 = F.interpolate(y8 + x4, scale_factor=2, mode='nearest')
        # print("y7", y7.size())
        y6 = self.decode_conv3(y7)
        #print("y6", y6.size())
        y5 = F.interpolate(y6 + x3, scale_factor=2, mode='nearest')
        #print("y5", y5.size())
        y4 = self.decode_conv4(y5)
        y4 = self.decode_conv4b(y4)
        #print("y4", y4.size())
        y3 = F.interpolate(y4 + x1, scale_factor=2, mode='nearest')
        # print("y3", y3.size())
        y2 = self.decode_conv5(y3)
        # print("y2", y2.size())
        y1 = F.interpolate(y2, scale_factor=1, mode='nearest')
        # print("y1", y1.size())
        y = self.decode_conv6(y1)

        return y