Automatic gradient and torch.sum

Thank you again for your comment. I am almost there to understand the issue.
May I ask you again how can I use torch.autograd.gradcheck for future reference?
You mentioned above

grad_chk = torch.autograd.gradcheck(
    eval_g, torch.tensor([k], dtype=torch.double, requires_grad=True))

But it gives an error…

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
~/Dropbox/tmp_pytorch.py in <module>
    156 # grad = eval_jac_g(np.array([k]), False)
    157 grad_chk = torch.autograd.gradcheck(
--> 158     eval_g, torch.tensor([k], dtype=torch.double, requires_grad=True))
    159 print(grad_chk)
    160

~/.pyenv/versions/anaconda3-5.3.0/envs/adapt/lib/python3.7/site-packages/torch/autograd/gradcheck.py in gradcheck(func, inputs, eps, atol, rtol, raise_exception, check_sparse_nnz, nondet_tol)
    258
    259     func_out = func(*tupled_inputs)
--> 260     output = _differentiable_outputs(func_out)
    261
    262     if not output:

~/.pyenv/versions/anaconda3-5.3.0/envs/adapt/lib/python3.7/site-packages/torch/autograd/gradcheck.py in _differentiable_outputs(x)
    182
    183 def _differentiable_outputs(x):
--> 184     return tuple(o for o in _as_tuple(x) if o.requires_grad)
    185
    186

~/.pyenv/versions/anaconda3-5.3.0/envs/adapt/lib/python3.7/site-packages/torch/autograd/gradcheck.py in <genexpr>(.0)
    182
    183 def _differentiable_outputs(x):
--> 184     return tuple(o for o in _as_tuple(x) if o.requires_grad)
    185
    186

AttributeError: 'numpy.ndarray' object has no attribute 'requires_grad'

How should I fix it?
The function that I want to check gradient is defined as

def eval_g(x):
    """ The system of non-linear equilibrium conditions
    x[0]: Capital stock in the next period
    """
    assert len(x) == nvar

    # Consumption today
    con = a * k**alpha * ls**(1-alpha) - x[0]

    # Labor supply tomorrow
    # ls_plus = np.empty(x5.shape)
    ls_plus = torch.empty(x5.shape)
    for aplus_idx, aplus_val in enumerate(aplus):
        ls_plus[aplus_idx] = ls_compute(
            k=x[0], A=aplus_val, alpha=alpha, psi=psi, theta=theta)
    # Capital stock tomorrow
    k_plusplus = torch.empty(aplus.shape)
    for aplus_idx, aplus_val in enumerate(aplus):
        # state_plus = torch.tensor([x[0], aplus_val])[None, :].float()
        k_plusplus[aplus_idx] = torch.tensor(k)  # Needs to be modified

    # Consumption tomorrow
    con_plus = aplus * x[0]**alpha * ls_plus**(1-alpha) - k_plusplus

    # ----------------------------------------------------------------------- #
    # Euler equation
    # ----------------------------------------------------------------------- #
    g0 = 1 / con - beta * alpha * torch.sum(omega5 * (
        1 / con_plus * aplus * x[0]**(alpha-1) * ls_plus**(1-alpha)))

    return np.array([g0])