Hi, I am new in Pytorch. My model is the following:

```
emb = nn.Embedding(100, 100)
fc_emb = nn.Linear(100, 512, bias=False)
dropout_fc = nn.Dropout(0.3)
conv = nn.Conv1d(in_channels=2, out_channels=512, kernel_size=1, stride=1)
dropout_c = nn.Dropout(0.3)
cat = nn.Bilinear(512, 512, 512)
drop_cat = nn.Dropout(0.3)
```

I have tried this example:

```
x_c = dropout_c(F.relu(conv(torch.randn(200,2,20))))
x_c = torch.transpose(x_c, 1, 2)
x_n = emb(torch.randint(0,100,(200,20)))
x_n = dropout_fc(F.relu(fc_emb(x_n)))
x = drop_cat(cat(x_c, x_n))
```

But I keep getting this error:

```
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
```

when I run the following code the `nn.Bilinear`

works well. But it gives me the error when I run the above codes.

```
cat(torch.randn(256, 20, 512),torch.randn(256, 20, 512)).shape
```

Could you please help me?