I have a network like this:
c, h, w = input_dim
self.online = nn.Sequential(
nn.Conv2d(in_channels=c, out_channels=32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(352764,512), nn.ReLU(), nn.Linear(512, output_dim) )
my input shape is (3,250,315) and my actual inputs are images, which I use transforms.ToTensor before passing to neural net.
but when I run it, I get this error:
RuntimeError: Given groups=1, weight of size [32, 315, 8, 8], expected input[8, 3, 250, 315] to have 315 channels, but got 3 channels instead.
my actual inputs are images, which I use transforms.ToTensor before passing to neural net.