ConstantPad1d Deprecated

Hi, I am trying this wavenet model and been facing issue with this ConstantPad1d function.

class ConstantPad1d(Function):
    def __init__(self, target_size, dimension=0, value=0, pad_start=False):
        super(ConstantPad1d, self).__init__()
        self.target_size = target_size
        self.dimension = dimension
        self.value = value
        self.pad_start = pad_start

    def forward(self, input):
        self.num_pad = self.target_size - input.size(self.dimension)
        assert self.num_pad >= 0, 'target size has to be greater than input size'

        self.input_size = input.size()

        size = list(input.size())
        size[self.dimension] = self.target_size
        output =*tuple(size)).fill_(self.value)
        c_output = output

        if self.pad_start:
            c_output = c_output.narrow(self.dimension, self.num_pad, c_output.size(self.dimension) - self.num_pad)
            c_output = c_output.narrow(self.dimension, 0, c_output.size(self.dimension) - self.num_pad)

        return output

    def backward(self, grad_output):
        grad_input =*self.input_size).zero_()
        cg_output = grad_output

        if self.pad_start:
            cg_output = cg_output.narrow(self.dimension, self.num_pad, cg_output.size(self.dimension) - self.num_pad)
            cg_output = cg_output.narrow(self.dimension, 0, cg_output.size(self.dimension) - self.num_pad)

        return grad_input

Error :slight_smile:
RuntimeError: Legacy autograd function with non-static forward method is deprecated. Please use new-style autograd function with static forward method. (Example: Automatic differentiation package - torch.autograd — PyTorch 1.10 documentation)

Can anyone please help what I need to change here?

I have even raised on their official github, but I guess they are too busy.

I don’t know which part of your code is raising the error, but the linked docs should give you an example on how to use the new autograd.Functions (i.e. via their apply op).
In any case, wouldn’t the PyTorch torch.nn.ConstantPad1d method work instead or is your custom layer using a different implementation?

Sorry for providing in-sufficient context.

Actually the error is coming when I am calling dilate function, and specific location of error is at ConstantPad1d.

Just copy the entire code and run the sample toy I have mentioned below. The error you will see at ConstantPad1d function.

from modules import dilate
import torch

x = torch.randn(size=(1, 2, 11))


new_x = dilate(x, 2, 1)