i use window 10 pro, graphic card geforce 1050ti, and anaconda spyder python3.7
I am learning about Unet and practice code.
but i have some problem. Maybe… enumerate{dataLoader]) make error.
==============
i use this code for dataset and dataloader
class Dataset(object):
def init(self, fname ,img_transform=None, mask_transform = None, edge_weight= False):
#nothing special here, just internalizing the constructor parameters
self.fname=fname
self.edge_weight = edge_weight
self.img_transform=img_transform
self.mask_transform = mask_transform
self.tables=tables.open_file(self.fname)
self.numpixels=self.tables.root.numpixels[:]
self.nitems=self.tables.root.img.shape[0]
self.tables.close()
self.img = None
self.mask = None
def __getitem__(self, index):
#opening should be done in __init__ but seems to be
#an issue with multithreading so doing here
with tables.open_file(self.fname,'r') as db:
self.img=db.root.img
self.mask=db.root.mask
#get the requested image and mask from the pytable
img = self.img[index,:,:,:]
mask = self.mask[index,:,:]
#the original Unet paper assignes increased weights to the edges of the annotated objects
#their method is more sophistocated, but this one is faster, we simply dilate the mask and
#highlight all the pixels which were "added"
if(self.edge_weight):
weight = scipy.ndimage.morphology.binary_dilation(mask==1, iterations =2) & ~mask
else: #otherwise the edge weight is all ones and thus has no affect
weight = np.ones(mask.shape,dtype=mask.dtype)
mask = mask[:,:,None].repeat(3,axis=2) #in order to use the transformations given by torchvision
weight = weight[:,:,None].repeat(3,axis=2) #inputs need to be 3D, so here we convert from 1d to 3d by repetition
img_new = img
mask_new = mask
weight_new = weight
seed = random.randrange(sys.maxsize) #get a random seed so that we can reproducibly do the transofrmations
if self.img_transform is not None:
random.seed(seed) # apply this seed to img transforms
img_new = self.img_transform(img)
if self.mask_transform is not None:
random.seed(seed)
mask_new = self.mask_transform(mask)
mask_new = np.asarray(mask_new)[:,:,0].squeeze()
random.seed(seed)
weight_new = self.mask_transform(weight)
weight_new = np.asarray(weight_new)[:,:,0].squeeze()
return img_new, mask_new, weight_new
def __len__(self):
return self.nitems
In[ ]:
#note that since we need the transofrmations to be reproducible for both masks and images
#we do the spatial transformations first, and afterwards do any color augmentations
img_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(size=(patch_size,patch_size),pad_if_needed=True), #these need to be in a reproducible order, first affine transforms and then color
transforms.RandomResizedCrop(size=patch_size),
transforms.RandomRotation(180),
transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=.5),
transforms.RandomGrayscale(),
transforms.ToTensor()
])
mask_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(size=(patch_size,patch_size),pad_if_needed=True), #these need to be in a reproducible order, first affine transforms and then color
transforms.RandomResizedCrop(size=patch_size,interpolation=PIL.Image.NEAREST),
transforms.RandomRotation(180),
])
dataset={}
dataLoader={}
for phase in phases: #now for each of the phases, we’re creating the dataloader
#interestingly, given the batch size, i’ve not seen any improvements from using a num_workers>0
dataset[phase]=Dataset(f"./{dataname}_{phase}.pytable", img_transform=img_transform , mask_transform = mask_transform ,edge_weight=edge_weight)
dataLoader[phase]=DataLoader(dataset[phase], batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
=======================================
Then, using this code, some error occurs.
writer=SummaryWriter() #open the tensorboard visualiser
best_loss_on_test = np.Infinity
edge_weight=torch.tensor(edge_weight).to(device)
start_time = time.time()
for epoch in range(num_epochs):
#zero out epoch based performance variables
all_acc = {key: 0 for key in phases}
all_loss = {key: torch.zeros(0).to(device) for key in phases}
cmatrix = {key: np.zeros((2,2)) for key in phases}
for phase in phases: #iterate through both training and validation states
if phase == 'train':
model.train() # Set model to training mode
else: #when in eval mode, we don't want parameters to be updated
model.eval() # Set model to evaluate mode
for ii , [X, y, y_weight] in enumerate(dataLoader[phase]): #for each of the batches
X = X.to(device) # [Nbatch, 3, H, W]
y_weight = y_weight.type('torch.FloatTensor').to(device)
y = y.type('torch.LongTensor').to(device) # [Nbatch, H, W] with class indices (0, 1)
with torch.set_grad_enabled(phase == 'train'): #dynamically set gradient computation, in case of validation, this isn't needed
#disabling is good practice and improves inference time
prediction = model(X) # [N, Nclass, H, W]
loss_matrix = criterion(prediction, y)
loss = (loss_matrix * (edge_weight**y_weight)).mean() #can skip if edge weight==1
if phase=="train": #in case we're in train mode, need to do back propogation
optim.zero_grad()
loss.backward()
optim.step()
train_loss = loss
all_loss[phase]=torch.cat((all_loss[phase],loss.detach().view(1,-1)))
if phase in validation_phases: #if this phase is part of validation, compute confusion matrix
p=prediction[:,:,:,:].detach().cpu().numpy()
cpredflat=np.argmax(p,axis=1).flatten()
yflat=y.cpu().numpy().flatten()
cmatrix[phase]=cmatrix[phase]+confusion_matrix(yflat,cpredflat,labels=range(n_classes))
all_acc[phase]=(cmatrix[phase]/cmatrix[phase].sum()).trace()
all_loss[phase] = all_loss[phase].cpu().numpy().mean()
#save metrics to tensorboard
writer.add_scalar(f'{phase}/loss', all_loss[phase], epoch)
if phase in validation_phases:
writer.add_scalar(f'{phase}/acc', all_acc[phase], epoch)
writer.add_scalar(f'{phase}/TN', cmatrix[phase][0,0], epoch)
writer.add_scalar(f'{phase}/TP', cmatrix[phase][1,1], epoch)
writer.add_scalar(f'{phase}/FP', cmatrix[phase][0,1], epoch)
writer.add_scalar(f'{phase}/FN', cmatrix[phase][1,0], epoch)
writer.add_scalar(f'{phase}/TNR', cmatrix[phase][0,0]/(cmatrix[phase][0,0]+cmatrix[phase][0,1]), epoch)
writer.add_scalar(f'{phase}/TPR', cmatrix[phase][1,1]/(cmatrix[phase][1,1]+cmatrix[phase][1,0]), epoch)
print('%s ([%d/%d] %d%%), train loss: %.4f test loss: %.4f' % (timeSince(start_time, (epoch+1) / num_epochs), epoch+1, num_epochs ,(epoch+1) / num_epochs * 100, all_loss["train"], all_loss["val"]),end="")
#if current loss is the best we've seen, save model state with all variables
#necessary for recreation
if all_loss["val"] < best_loss_on_test:
best_loss_on_test = all_loss["val"]
print(" **")
state = {'epoch': epoch + 1,
'model_dict': model.state_dict(),
'optim_dict': optim.state_dict(),
'best_loss_on_test': all_loss,
'n_classes': n_classes,
'in_channels': in_channels,
'padding': padding,
'depth': depth,
'wf': wf,
'up_mode': up_mode, 'batch_norm': batch_norm}
torch.save(state, f"{dataname}_unet_best_model.pth")
else:
print("")
error is…
ipdb> Traceback (most recent call last):
File “”, line 1, in
debugfile(‘C:/Users/mbmhm/Desktop/unet/train_unet.py’, wdir=‘C:/Users/mbmhm/Desktop/unet’)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py”, line 856, in debugfile
debugger.run(“runfile(%r, args=%r, wdir=%r)” % (filename, args, wdir))
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\bdb.py”, line 585, in run
exec(cmd, globals, locals)
File “”, line 1, in
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py”, line 827, in runfile
execfile(filename, namespace)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py”, line 110, in execfile
exec(compile(f.read(), filename, ‘exec’), namespace)
File “c:/users/mbmhm/desktop/unet/train_unet.py”, line 265, in
for ii , [X, y, y_weight] in enumerate(dataLoader[phase]): #for each of the batches
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\torch\utils\data\dataloader.py”, line 193, in iter
return _DataLoaderIter(self)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\torch\utils\data\dataloader.py”, line 469, in init
w.start()
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\multiprocessing\process.py”, line 112, in start
self._popen = self._Popen(self)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\multiprocessing\context.py”, line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\multiprocessing\context.py”, line 322, in _Popen
return Popen(process_obj)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\multiprocessing\popen_spawn_win32.py”, line 89, in init
reduction.dump(process_obj, to_child)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\multiprocessing\reduction.py”, line 60, in dump
ForkingPickler(file, protocol).dump(obj)
File “stringsource”, line 2, in tables.hdf5extension.Array.reduce_cython
TypeError: self.dims,self.dims_chunk,self.maxdims cannot be converted to a Python object for pickling
===================================
I use different code, but error occer.
for x,y,w in dataLoader[‘train’]:
print(x.shape, y.shape, w.shape)
ipdb> _CudaDeviceProperties(name=‘GeForce GTX 1050 Ti’, major=6, minor=1, total_memory=4096MB, multi_processor_count=6)
total params: 122466
ipdb> Traceback (most recent call last):
File “”, line 1, in
debugfile(‘C:/Users/mbmhm/Desktop/unet/train_unet.py’, wdir=‘C:/Users/mbmhm/Desktop/unet’)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py”, line 856, in debugfile
debugger.run(“runfile(%r, args=%r, wdir=%r)” % (filename, args, wdir))
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\bdb.py”, line 585, in run
exec(cmd, globals, locals)
File “”, line 1, in
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py”, line 827, in runfile
execfile(filename, namespace)
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py”, line 110, in execfile
exec(compile(f.read(), filename, ‘exec’), namespace)
File “c:/users/mbmhm/desktop/unet/train_unet.py”, line 200, in
for x,y,w in dataLoader[‘train’]:
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\torch\utils\data\dataloader.py”, line 576, in next
idx, batch = self._get_batch()
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\torch\utils\data\dataloader.py”, line 543, in _get_batch
success, data = self._try_get_batch()
File “C:\Users\mbmhm\ansel\Anaconda3\envs\moongpu\lib\site-packages\torch\utils\data\dataloader.py”, line 519, in _try_get_batch
raise RuntimeError(‘DataLoader worker (pid(s) {}) exited unexpectedly’.format(pids_str))
RuntimeError: DataLoader worker (pid(s) 500, 6872) exited unexpectedly
what can i do to solve this problem.