Thanks, AlbanD,
I can confirm the target input to loss() is correct.
By using anomaly detection mode, I still can got different errors as following when running the code. And I did not shuffle the data input to the model, so every time the input data is the same.
(1):
THCudaCheck FAIL file=/pytorch/aten/src/THC/generated/…/THCTensorMathCompareT.cuh line=71 error=77 : an illegal memory access was encountered
sys:1: RuntimeWarning: Traceback of forward call that caused the error:
File “test.py”, line 105, in
train(epoch)
File “test.py”, line 85, in train
end_point = model(data)
File “/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py”, line 477, in call
result = self.forward(*input, **kwargs)
File “test.py”, line 50, in forward
data = max_pool(cluster, data, transform=transform)
File “/usr/local/lib/python2.7/dist-packages/torch_geometric/nn/pool/max_pool.py”, line 29, in max_pool
x = _max_pool_x(cluster, data.x)
File “/usr/local/lib/python2.7/dist-packages/torch_geometric/nn/pool/max_pool.py”, line 10, in _max_pool_x
x, _ = scatter_max(x, cluster, dim=0, dim_size=size, fill_value=fill)
File “/usr/local/lib/python2.7/dist-packages/torch_scatter/max.py”, line 99, in scatter_max
return ScatterMax.apply(out, src, index, dim)
Traceback (most recent call last):
File “test.py”, line 105, in
train(epoch)
File “test.py”, line 88, in train
loss.backward()
File “/usr/local/lib/python2.7/dist-packages/torch/tensor.py”, line 93, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File “/usr/local/lib/python2.7/dist-packages/torch/autograd/init.py”, line 90, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: cuda runtime error (77) : an illegal memory access was encountered at /pytorch/aten/src/THC/generated/…/THCTensorMathCompareT.cuh:71
(2):
THCudaCheck FAIL file=/pytorch/aten/src/THC/THCTensorCopy.cu line=102 error=59 : device-side assert triggered
sys:1: RuntimeWarning: Traceback of forward call that caused the error:
File “test.py”, line 105, in
train(epoch)
File “test.py”, line 85, in train
end_point = model(data)
File “/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py”, line 477, in call
result = self.forward(*input, **kwargs)
File “test.py”, line 48, in forward
data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
File “/usr/local/lib/python2.7/dist-packages/torch/nn/modules/module.py”, line 477, in call
result = self.forward(*input, **kwargs)
File “/usr/local/lib/python2.7/dist-packages/torch_geometric/nn/conv/spline_conv.py”, line 88, in forward
self.norm, self.root, self.bias)
File “/usr/local/lib/python2.7/dist-packages/torch_spline_conv/conv.py”, line 62, in apply
out = SplineWeighting.apply(x[col], weight, *data)
Traceback (most recent call last):
File “test.py”, line 105, in
train(epoch)
File “test.py”, line 88, in train
loss.backward()
File “/usr/local/lib/python2.7/dist-packages/torch/tensor.py”, line 93, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File “/usr/local/lib/python2.7/dist-packages/torch/autograd/init.py”, line 90, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: cuda runtime error (59) : device-side assert triggered at /pytorch/aten/src/THC/THCTensorCopy.cu:102