DiagonalBiLSTM RuntimeError: bool value of Tensor with more than one value is ambiguous


I am trying to implement Diagonal BiLSTM using torch. I have CBAM model prepared, also spatial gate as mentioned in this paper. My code for defining conv2d layer is as follows.

def Conv2D(name, input_dim, output_dim, filter_size, inputs, mask_type=None, he_init=False):
    inputs.shape: (batch size, height, width, input_dim)
    mask_type: None, 'a', 'b'
    output.shape: (batch size, height, width, output_dim)
    def uniform(stdev, size):
        return np.random.uniform(
            low=-stdev * np.sqrt(3),
            high=stdev * np.sqrt(3),

    filters_init = uniform(
        1./np.sqrt(input_dim * filter_size * filter_size),
        # output dim, input dim, height, width
        (output_dim, input_dim, filter_size, filter_size)

    if he_init:
        filters_init *= lib.floatX(np.sqrt(2.))

    if mask_type is not None:
        filters_init *= lib.floatX(np.sqrt(2.))

    filters = lib.param(

    if mask_type is not None:
        mask = np.ones(
            (output_dim, input_dim, filter_size, filter_size), 
        center = filter_size//2
        for i in range(filter_size):
            for j in range(filter_size):
                    if (j > center) or (j==center and i > center):
                        mask[:, :, j, i] = 0.
        for i in range(N_CHANNELS):
            for j in range(N_CHANNELS):
                if (mask_type=='a' and i >= j) or (mask_type=='b' and i > j):
                    ] = 0.

        filters = filters * mask

    inputs = inputs.permute(0, 3, 1, 2)
    inps = torch.cat((torch.max(inputs, 1)[0].unsqueeze(1), torch.mean(inputs, 1).unsqueeze(1)), dim=1)
    result = torch.nn.Conv2d(inps, 1, 7, stride=1)
    biases = lib.param(
        np.zeros(output_dim, dtype=np.float32)
    result = result + biases[None, :, None, None]

    return result.permute(0, 2, 3, 1)

But when i try to pass the tensors to conv2d layer from torch.nn i get following error.

I tired to print the tensors in the inps variable & they look something like this

tensor([[[[ 2.1475e+00,  2.2656e+00,  2.2285e+00,  ...,  2.1634e+00,
            1.9802e+00,  2.0768e+00],
          [ 1.1065e-01,  9.3942e-02,  1.3884e-01,  ...,  6.6712e-02,
            9.9830e-02,  1.4429e-01]],

         [[ 1.6910e+00,  1.5110e+00,  1.5579e+00,  ...,  1.0768e+00,
            1.5984e+00,  1.6736e+00],
          [-8.2758e-02, -1.3184e-02,  5.0098e-02,  ...,  2.2589e-03,
            5.8106e-02,  7.3571e-03]]],

        [[[ 2.2599e+00,  2.3655e+00,  2.2511e+00,  ...,  2.5398e+00,
            2.0128e+00,  1.9834e+00],
          [ 9.4436e-02,  9.2293e-02,  1.5296e-01,  ...,  5.4408e-02,
            9.8131e-02,  1.3627e-01]],

         [[ 1.6812e+00,  1.4765e+00,  1.5793e+00,  ...,  1.1819e+00,
            1.6332e+00,  1.6482e+00],
          [-8.4564e-02, -1.1611e-02,  5.6016e-02,  ...,  1.8283e-03,
            5.0835e-02,  1.7487e-02]]],

        [[[ 2.2437e+00,  2.4011e+00,  2.4019e+00,  ...,  2.4042e+00,
            2.0544e+00,  2.2374e+00],
          [ 8.5540e-02,  9.6436e-02,  1.3502e-01,  ...,  7.4034e-02,
            1.0697e-01,  1.4066e-01]],

         [[ 1.6898e+00,  1.4664e+00,  1.5747e+00,  ...,  1.0820e+00,
            1.6203e+00,  1.7650e+00],
          [-7.5721e-02, -1.1245e-02,  5.4568e-02,  ..., -5.5246e-03,
            5.6962e-02,  9.4589e-03]]],


        [[[ 2.1059e+00,  2.3265e+00,  2.4311e+00,  ...,  2.4247e+00,
            1.9939e+00,  2.0536e+00],
          [ 9.6550e-02,  1.0173e-01,  1.4329e-01,  ...,  6.5086e-02,
            1.0176e-01,  1.3881e-01]],

         [[ 1.6375e+00,  1.5037e+00,  1.5442e+00,  ...,  1.1553e+00,
            1.6443e+00,  1.6747e+00],
          [-8.6096e-02, -1.2071e-02,  5.6651e-02,  ..., -1.4265e-03,
            5.6373e-02,  1.3945e-02]]],

        [[[ 2.3196e+00,  2.1638e+00,  2.1018e+00,  ...,  2.3779e+00,
            1.9471e+00,  1.9064e+00],
          [ 9.8306e-02,  9.1398e-02,  1.5183e-01,  ...,  6.4398e-02,
            1.0629e-01,  1.4232e-01]],

         [[ 1.6620e+00,  1.5137e+00,  1.5810e+00,  ...,  1.0661e+00,
            1.5326e+00,  1.6870e+00],
          [-8.2823e-02, -8.9255e-03,  5.7103e-02,  ..., -3.1661e-03,
            5.9011e-02,  6.9708e-03]]],

        [[[ 2.2586e+00,  2.3127e+00,  2.1126e+00,  ...,  2.3692e+00,
            2.0004e+00,  2.0361e+00],
          [ 8.9194e-02,  9.7919e-02,  1.4491e-01,  ...,  8.3260e-02,
            1.0935e-01,  1.4324e-01]],

         [[ 1.7048e+00,  1.5188e+00,  1.6082e+00,  ...,  1.1044e+00,
            1.5624e+00,  1.7280e+00],
          [-8.0997e-02, -8.0655e-03,  6.0712e-02,  ..., -4.3486e-03,
            5.7900e-02,  8.8437e-03]]]], grad_fn=<CatBackward>)

I have attached the error stack-trace as well.

Traceback (most recent call last):
  File "main.py", line 83, in <module>
    train(resnet18, args)
  File "main.py", line 52, in train
    logits = model(spatio_tempo.float().to(device))
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/kevittechnologies/Akshay/Video analysis/rPPG_CNN-master/model.py", line 166, in forward
    x = self.layer1(x)
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward
    input = module(input)
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/kevittechnologies/Akshay/Video analysis/rPPG_CNN-master/model.py", line 44, in forward
    out = self.cbam(out)
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/kevittechnologies/Akshay/Video analysis/rPPG_CNN-master/cbam.py", line 126, in forward
    x_out = self.ARNN(x_out)
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/kevittechnologies/Akshay/Video analysis/rPPG_CNN-master/cbam.py", line 106, in forward
    y_out = DiagonalBiLSTM('LSTM', 64,y_compress)
  File "/home/kevittechnologies/Akshay/Video analysis/rPPG_CNN-master/diagonal_lstm.py", line 214, in DiagonalBiLSTM
    forward = DiagonalLSTM(name+'.Forward', input_dim, inputs)
  File "/home/kevittechnologies/Akshay/Video analysis/rPPG_CNN-master/diagonal_lstm.py", line 160, in DiagonalLSTM
    input_to_state = Conv2D(name+'.InputToState', input_dim, 4*DIM, 1, inputs, mask_type='b')
  File "/home/kevittechnologies/Akshay/Video analysis/rPPG_CNN-master/diagonal_lstm.py", line 88, in Conv2D
    result = torch.nn.Conv2d(inps, 1, 7, stride=1)
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 327, in __init__
    False, _pair(0), groups, bias, padding_mode)
  File "/home/kevittechnologies/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 21, in __init__
    if in_channels % groups != 0:
RuntimeError: bool value of Tensor with more than one value is ambiguous

Do help me with this please. I am new to torch & would appreciate any answers.

You would have to create the nn.Conv2d module first and pass then the input to it.
Currently you are trying to use the module in a functional way:

result = torch.nn.Conv2d(inps, 1, 7, stride=1)

Have a look at this tutorial to see how to properly initialize and use modules and the functional API.

Thank you for responding to my question @ptrblck. I will go through that tutorial right now.

But when i used torch.nn.functional.conv2d i faced the same error

Could you post the code using the functional API?