# Different convolution results using spatial and frequency convolution

Hi, I’m performing a periodic/circular convolution using both the spatial convolution (`F.conv2d`) and using the frequency domain multiplication (`torch.rfft` and `torch.irfft`). The issue is that both methods yield different results (frequency domain one is wrong).

I have the detailed code and results described in stackoverflow.

It would be much appreciated if someone could help me realize what is wrong.
Kind regards

PyTorch convolution layers perform in fact a cross-correlation, so maybe this might be an issue in comparing different approaches.

Indeed, but after fixing a mistake in the kernel padding I have managed to get the same results using `Fourier` and `F.conv2d` (which in fact is a correlation), which is weird since the property hold for convolution and not for correlation.

That’s interesting. Could you post the code for your comparison as I would like to have a look at it?

Of course.
The code is the following:

``````import torch
import numpy as np
import scipy.signal as sig
import torch.nn.functional as F
import matplotlib.pyplot as plt

def numpy_periodic_conv(f, k):
H, W = f.shape
periodic_f = np.hstack([f, f])
periodic_f = np.vstack([periodic_f, periodic_f])
conv = sig.convolve2d(periodic_f, k, mode='same')
conv = conv[H // 2:-H // 2, W // 2:-W // 2]
return periodic_f, conv

def torch_periodic_conv(f, k):
H, W = f.shape[-2:]
periodic_f = f.repeat(1, 1, 2, 2)
conv = F.conv2d(periodic_f, k, padding=1)
conv = conv[:, :, H // 2:-H // 2, W // 2:-W // 2]
return periodic_f.squeeze().numpy(), conv.squeeze().numpy()

def torch_fourier_conv(f, k):
pad_x = f.shape[-2] - k.shape[-2]
pad_y = f.shape[-1] - k.shape[-1]
expanded_kernel = F.pad(k, [0, pad_x, 0, pad_y])
fft_x = torch.rfft(f, 2, onesided=False)
fft_kernel = torch.rfft(expanded_kernel, 2, onesided=False)
real = fft_x[:, :, :, :, 0] * fft_kernel[:, :, :, :, 0] - \
fft_x[:, :, :, :, 1] * fft_kernel[:, :, :, :, 1]
im = fft_x[:, :, :, :, 0] * fft_kernel[:, :, :, :, 1] + \
fft_x[:, :, :, :, 1] * fft_kernel[:, :, :, :, 0]
fft_conv = torch.stack([real, im], -1) # (a+bj)*(c+dj) = (ac-bd)+(ad+bc)j
ifft_conv = torch.irfft(fft_conv, 2, onesided=False)
return expanded_kernel.squeeze().numpy(), ifft_conv.squeeze().numpy()

if __name__ == '__main__':
f = np.concatenate([np.ones((10, 5)), np.zeros((10, 5))], 1)
k = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])

f_tensor = torch.from_numpy(f).unsqueeze(0).unsqueeze(0).float()
k_tensor = torch.from_numpy(k).unsqueeze(0).unsqueeze(0).float()

np_periodic_f, np_periodic_conv = numpy_periodic_conv(f, k)
tc_periodic_f, tc_periodic_conv = torch_periodic_conv(f_tensor, k_tensor)
tc_fourier_k, tc_fourier_conv = torch_fourier_conv(f_tensor, k_tensor)

print('Spatial numpy conv shape= ', np_periodic_conv.shape)
print('Spatial torch conv shape= ', tc_periodic_conv.shape)
print('Fourier torch conv shape= ', tc_fourier_conv.shape)

r_np = dict(name='numpy', im=np_periodic_f, k=k, conv=np_periodic_conv)
r_torch = dict(name='torch', im=tc_periodic_f, k=k, conv=tc_periodic_conv)
r_fourier = dict(name='fourier', im=f, k=tc_fourier_k, conv=tc_fourier_conv)
titles = ['{} im', '{} kernel', '{} conv']
results = [r_np, r_torch, r_fourier]
fig, axs = plt.subplots(3, 3)
for i, r_dict in enumerate(results):
axs[i, 0].imshow(r_dict['im'], cmap='gray')
axs[i, 0].set_title(titles[0].format(r_dict['name']))
axs[i, 1].imshow(r_dict['k'], cmap='gray')
axs[i, 1].set_title(titles[1].format(r_dict['name']))
axs[i, 2].imshow(r_dict['conv'], cmap='gray')
axs[i, 2].set_title(titles[2].format(r_dict['name']))
plt.show()

``````

And the results are the following:

1 Like