Does amp.autocast convert all ops to FP16 type?

After i read the Pytorch docs, i think it’s not.
But what about this situation ?
op1 output a Tensor output1 (dtype=torch.float16). The next operation op2 is FP32 type, so it needs torch.float32 input. Now, does op2 need to convert output1 dtype to torch.float32 ?

No, autocast does not convert everything to float16, as it’s numerically not stable enough for a lot of use cases. You could perform if via directly calling model.half() and wouldn’t need autocast for it.

Yes, the transformations are done when needed.

Similar to ?
In this case, I think it will take a lot of time to switch between torch.float16 and torch.float32, because there are many ops with different FP type.

Yes, you are right that transformations are not free, but eventually you would still see an end2end speedup using amp and you should profile your models to check it.

I get it, thank you very much.