Error in Encoder Decoder Based Model

type or p#------------------------------------------------------------------------------#
import torch
import torch.nn as nn
import torch.nn.functional as F
#------------------------------------------------------------------------------#
class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            )

    def forward(self, x):
        return self.double_conv(x)
#-----------------------------------------------------------------------------#
class conv1_cross_1(nn.Module):
    
    def __init__(self,in_channels,out_channels):
        super().__init__()
        self.conv1x1 = nn.Sequential (
        nn.Conv2d(in_channels, out_channels, kernel_size=1,padding=0)
                                     )
        
    def forward(self, x):
        return self.conv1x1(x)
#--------------------------------------------------------------------------------#
class Down(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2)
        )

    def forward(self, x):
        return self.maxpool_conv(x)
#------------------------------------------------------------------------------#

    
class Up(nn.Module):
    
    def __init__(self, in_channels, out_channels):
        super().__init__()
        # print (in_channels, out_channels)
        self.up_sampling = nn.Sequential (
        nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, padding=0),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(inplace=True))

    def forward(self, x):
        x = self.up_sampling(x)
        return x
   
#-------------------------------------------------------------------------------# 
class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)   
#------------------------------------------------------------------------------#
class UNet(nn.Module):
    def __init__(self, n_channels, n_classes):
        super(UNet, self).__init__()
        # self.n_channels = n_channels
        # self.n_classes = n_classes
        
        #------------------------------#
        #          ENCODER             #
        #------------------------------#
        
        self.inc1 = DoubleConv(1,96)
        self.down1 = Down(96,96)
        
        self.inc2 = DoubleConv(96,96)
        self.down2 = Down(96,96)
        
        self.inc3 = DoubleConv(96,96)
        self.down3 = Down(96,96)
        
        self.inc4 = DoubleConv(96,96)
        self.down4 = Down(96,96)
        
        
        #------------------------------#
        #       BOTTLENECK             #
        #------------------------------#
        
        self.bot1=conv1_cross_1 (96,96)
        
        
        #-------------------------------#
        #          UP                   #
        #-------------------------------#
        self.up1 = Up(96,96)
        self.up2 = Up(96,96)
        self.up3 = Up(96,96)
        self.up4 = Up(96,96)
        
        self.outc = OutConv(96,3)


    def forward(self, x):
        
        x1 = self.inc1(x)
        x2 = self.down1(x1)       # maxpooling
#--------------------------------------------------------#
        x3 = self.inc2(x2)
        x4 = self.down2 (x3)      # maxpooling
#--------------------------------------------------------#
        x5 = self.inc3(x4)
        x6 = self.down3(x5)       # maxpooling
#--------------------------------------------------------#
        x7 = self.inc4(x6)
        x8 = self.down4 (x7)      # maxpooling
#--------------------------------------------------------#
        x9 = self.bot1(x8)
#--------------------------------------------------------#
        x = self.up1(x9)
        x = torch.cat([x, x7], dim=1)
        print (x.shape)
#--------------------------------------------------------#
        x = self.up2 (x) 
        x = torch.cat([x, x5], dim=1)
        print (x.shape)
#--------------------------------------------------------#
        x = self.up3 (x)
        x = torch.cat([x, x3], dim=1)       
#--------------------------------------------------------#
        x = self.up4 (x)
        x = torch.cat([x, x1], dim=1)
#--------------------------------------------------------#
        logits = self.outc(x)
        return logits

    # def use_checkpointing(self):
    #     self.inc = torch.utils.checkpoint(self.inc)
    #     self.down1 = torch.utils.checkpoint(self.down1)
    #     self.down2 = torch.utils.checkpoint(self.down2)
    #     self.down3 = torch.utils.checkpoint(self.down3)
    #     self.down4 = torch.utils.checkpoint(self.down4)
    #     self.up1 = torch.utils.checkpoint(self.up1)
    #     self.up2 = torch.utils.checkpoint(self.up2)
    #     self.up3 = torch.utils.checkpoint(self.up3)
    #     self.up4 = torch.utils.checkpoint(self.up4)
    #     self.outc = torch.utils.checkpoint(self.outc)


#------------------------------------------------------------------------------#
if __name__ == "__main__":
    # inputs = torch.randn([1,1,256,256])
    # image = cv2.imread (r'C:\Users\Idrees Bhat\Desktop\Research\Insha\Dataset\o_gray\1.png',0)
    # convert_tensor = transforms.ToTensor()
    # inputs=convert_tensor(image)
    # print (inputs.shape)
    # print (type(inputs)) # [1,256,256]
    # inputs = torch.randn((2,1,256,256))
    # y = conv_block(1,96)
    # y(inputs)
    # e = encoder_block(1, 96)
    # x,p = e(inputs)
    # print (x.shape, p.shape)
    inputs = torch.randn((1,1,256,256))
    # print (inputs.shape)
    # y = conv1_cross_1(1, 96)
    # y = Down(1, 96)
    # y = DoubleConv (1,96)
    # y(inputs)
    
    # y = Up(1,96)
    # y(inputs)
    # y = OutConv(1,3)
    # y(inputs)
    # d = conv1_cross_1 (96,1)
    # d(inputs)
    d =  UNet(1,96)
    d(inputs)
    
    # skip = torch. randn((2,32,512,512))
    # d = decoder_block(64, 96)
    # e = conv1_cross_1(96,96)
    # print (e)
    # d = build_unet()
    # d(inputs)
    # e(inputs)
    # print (inputs.shape,skip.shape,x.shape)
    #---------------------------------------------------#
    

Error:

runfile(‘C:/Users/Idrees Bhat/Desktop/insha/this_time.py’, wdir=‘C:/Users/Idrees Bhat/Desktop/insha’)
torch.Size([1, 192, 32, 32])
Traceback (most recent call last):

File ~\AppData\Local\anaconda3\Lib\site-packages\spyder_kernels\py3compat.py:356 in compat_exec
exec(code, globals, locals)

File c:\users\idrees bhat\desktop\insha\this_time.py:180
d(inputs)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1518 in _wrapped_call_impl
return self._call_impl(*args, **kwargs)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1527 in _call_impl
return forward_call(*args, **kwargs)

File c:\users\idrees bhat\desktop\insha\this_time.py:126 in forward
x = self.up2 (x)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1518 in _wrapped_call_impl
return self._call_impl(*args, **kwargs)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1527 in _call_impl
return forward_call(*args, **kwargs)

File c:\users\idrees bhat\desktop\insha\this_time.py:52 in forward
x = self.up_sampling(x)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1518 in _wrapped_call_impl
return self._call_impl(*args, **kwargs)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1527 in _call_impl
return forward_call(*args, **kwargs)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\container.py:215 in forward
input = module(input)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1518 in _wrapped_call_impl
return self._call_impl(*args, **kwargs)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1527 in _call_impl
return forward_call(*args, **kwargs)

File ~\AppData\Local\anaconda3\Lib\site-packages\torch\nn\modules\conv.py:952 in forward
return F.conv_transpose2d(

RuntimeError: Given transposed=1, weight of size [96, 96, 2, 2], expected input[1, 192, 32, 32] to have 96 channels, but got 192 channels instead
#------------------------------------------------------------------------------------------------------------------------#

I am not gettibg where is the error. Please help me out