Error loading the model torchscript

I don’t know what happen with torch::jit::script::Module I can’t load my torchscript model.

libtorch version that I used : 2.5.10 and 2.3.1
cmake : +2.30
IDE : clion

#include <iostream>
#include "raylib.h"
#include "torch/torch.h"
#include "torch/script.h"
#include "c10/core/DynamicCast.h"
#include <opencv2/opencv.hpp>
#include <memory>
#include <utility>
// #include <assert.h>

//PREPROCESSOR
#define SUPPER_COMMENT 1
// TIP To <b>Run</b> code, press <shortcut actionId="Run"/> or
// click the <icon src="AllIcons.Actions.Execute"/> icon in the gutter.
namespace trm { //trm is "transform"
    class ToTensor {
    public:
        ToTensor(int img_width,int img_height):
        width_(img_width),
        height_(img_height)
        {}
        at::Tensor operator()(const cv::Mat& img) const {

            //resize gambar
            cv::Mat resized_img;
            cv::resize(img,resized_img, cv::Size(width_, height_));

            //konversi dari BGR ke RGB
            cv::Mat rgb_img;
            cv::cvtColor(resized_img, rgb_img, cv::COLOR_BGR2RGB);

            //konversi ke tensor dengan range [0,1]
            auto tensor_img = torch::from_blob(
                rgb_img.data,
                {rgb_img.rows, rgb_img.cols, 3},
                torch::kByte
                ).permute({2,0,1}).to(torch::kFloat32).div(255.0);

            tensor_img = tensor_img.unsqueeze(0);
            std::cout << "tensor shape: " << tensor_img.sizes() << std::endl;
            return tensor_img;
        }

        static std::vector<torch::jit::IValue> toInput(torch::Tensor tensor_image) {
            // Create a vector of inputs.
            return std::vector<torch::jit::IValue>{std::move(tensor_image)};
        }
    private:
        int width_;
        int height_;
    };

//Z-Transform bellow
    class Normalize {
    public:
        Normalize(const std::vector<float> &mean, const std::vector<float> &std)
        : mean_(at::tensor(mean).view({3,1,1})),
        std_(at::tensor(std).view({3,1,1}))
        {

        }

        torch::Tensor operator()(const at::Tensor& img_tensor) const {
            return (img_tensor - mean_) / std_;
        }

    private:
        at::Tensor mean_;
        at::Tensor std_;
    };
}

#if SUPPER_COMMENT
std::string get_image_type(const cv::Mat& img, bool more_info=true)
{
    std::string r;
    int type = img.type();
    uchar depth = type & CV_MAT_DEPTH_MASK;
    uchar chans = 1 + (type >> CV_CN_SHIFT);

    switch (depth) {
        case CV_8U:  r = "8U"; break;
        case CV_8S:  r = "8S"; break;
        case CV_16U: r = "16U"; break;
        case CV_16S: r = "16S"; break;
        case CV_32S: r = "32S"; break;
        case CV_32F: r = "32F"; break;
        case CV_64F: r = "64F"; break;
        default:     r = "User"; break;
    }

    r += "C";
    r += (chans + '0');

    if (more_info)
        std::cout << "depth: " << img.depth() << " channels: " << img.channels() << std::endl;

    return r;
}

void show_image(cv::Mat& img, std::string title)
{
    std::string image_type = get_image_type(img);
    cv::namedWindow(title + " type:" + image_type, cv::WINDOW_NORMAL); // Create a window for display.
    cv::imshow(title, img);
    cv::waitKey(0);
}

#endif

int main(int argc, char *argv[]) {
// argc starts from 1..n, argv's index starts from 0..n
    // if (argc <= 2) {
    //     std::cerr << "Usage: " << argv[0] << " <path-to-exported-script-module>\n";
    //     return -1;
    // }

    // Z-transform mean and standard deviation value
    const std::vector<float> mean = {0.485, 0.456, 0.406};
    const std::vector<float> std = {0.229, 0.224, 0.225};

    //get image
    std::string msg = "sample image";
    std::string img_path = R"(D:\project-inf\derm-iterface\images\tincorp12.jpg)";
    cv::Mat image = cv::imread(img_path);
#if SUPPER_COMMENT
    show_image(image, msg);
#endif
    if (image.empty()) {
        std::cerr << "Failed to load image: " << argv[2] << "\n";
    }

    //ToTensor-->unsqueeze --> Z-Transform --> toInput
    trm::ToTensor to_tensor(224,224);
    at::Tensor tensor_img = to_tensor(image);
    std::cout << tensor_img.sizes() << std::endl;

    // // Z-transform
    trm::Normalize norm(mean, std);
    at::Tensor normalized_tensor_img = norm(tensor_img);

    // // toInput
    std::vector<torch::jit::IValue> inputs = trm::ToTensor::toInput(normalized_tensor_img);
    // std::cout <<  << std::endl;
//get model

try {
        // Deserialize the ScriptModule from a file using torch::jit::load().
    std::string model_name = R"(D:\project-inf\derm-iterface\models\nonmixup-modelTineaNCPU-75acc-19122024_09-53Hm.pt)";
    torch::jit::script::Module moduleV2 = torch::jit::load(model_name);
    std::cout << "module can load " << std::endl;
        //logit
    const at::Tensor output = moduleV2.forward(inputs).toTensor();

    std::cout << "output shape: " << output.sizes() << std::endl;
    std::cout << "output: " << output[0] << std::endl;
    std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';
}
catch (const c10::Error& e) {
    std::cerr << "error loading the model\n"<<e.msg();
    return -1;
}

std::cout << "ok\n";
std::system("pause");
//testing part
    // auto tensor = torch::tensor(mean);
    // auto reshaped_tensor = tensor.view({3,1,1});
    // std::cout << reshaped_tensor << "\n";

return EXIT_SUCCESS;
}

// TIP See CLion help at <a
// href="https://www.jetbrains.com/help/clion/">jetbrains.com/help/clion/</a>.
//  Also, you can try interactive lessons for CLion by selecting
//  'Help | Learn IDE Features' from the main menu.

does error correlated with this warning