Exporting pytorch model to ONNX that accepts dictionary

I am trying to pass a mapping to a module and export it to onnx, which I attempt in the following code:

import torch
import numpy
import io
import typing
import onnx
import onnxruntime

class Something(torch.nn.Module):
    def __init__(self):
        self.layer = torch.nn.Linear(10, 10)

    def forward(self, batch: typing.Dict[str, torch.Tensor]):
        y = self.layer(batch["x"])
        return {"y": y}

def main():
    something = Something()
    with io.BytesIO() as onnx_bytes:
        torch.onnx.export(something, ({"x": torch.ones(10, 10)}, {}), onnx_bytes)

        onnx_model = onnx.load_model_from_string(onnx_bytes.getvalue())

    model_proto = onnx_model.SerializeToString()
    session = onnxruntime.InferenceSession(model_proto)
    inputs = {session.get_inputs()[0].name: {"x": numpy.ones((10, 10))}}
    print(session.run(None, inputs)

However I get an exception:

Traceback (most recent call last):
  File "/media/main.py", line 53, in <module>
  File "/media/main.py", line 32, in main
    print(session.run(None, inputs))
  File "/media/venv/lib/python3.8/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 188, in run
    return self._sess.run(output_names, input_feed, run_options)
onnxruntime.capi.onnxruntime_pybind11_state.Fail: <class 'TypeError'>: only size-1 arrays can be converted to Python scalars

Is the desired behaviour achivable somehow?