FashionMNIST- CNN architecture and have a poblem with the train-loss which show : nan

Thanks. now this work:

define network forward pass

def forward(self, images):

    images=images.unsqueeze(dim=1)

         

    x = self.layer_1(images)

    x = self.layer_2(x)

    x = x.view(x.size(0), -1)

    

    x = self.linear1(x)

    x = self.drop(x)

    x = self.linear2(x)

    x = self.linear3(x)

    

    # define layer 3 forward pass

    # x = self.logsoftmax(self.linear3(x))

    

    # return forward pass result

    return x

But it still leads to an issue here:

init collection of training epoch losses

train_epoch_losses =

set the model in training mode

model.train()

train the MNISTNet model

for epoch in range(num_epochs):

# init collection of mini-batch losses

train_mini_batch_losses = []



# iterate over all-mini batches

for i, (images, labels) in enumerate(fashion_mnist_train_dataloader):

    

    # push mini-batch data to computation device

    images = images.to(device)

    labels = labels.to(device)

    # run forward pass through the network

    outputs = model(images)

            

    # reset graph gradients

    model.zero_grad()

    

    # determine classification loss

    loss = nll_loss(outputs, labels)

    

    # run backward pass

    loss.backward()

    

    # update network paramaters

    optimizer.step()

    

    # collect mini-batch reconstruction loss

    train_mini_batch_losses.append(loss.data.item())



# determine mean min-batch loss of epoch

train_epoch_loss = np.mean(train_mini_batch_losses)



# print epoch loss

now = datetime.utcnow().strftime("%Y%m%d-%H:%M:%S")

print('[LOG {}] epoch: {} train-loss: {}'.format(str(now), str(epoch), str(train_epoch_loss)))



# set filename of actual model

model_name = 'fashion_mnist_model_epoch_{}.pth'.format(str(epoch))

# save current model to GDrive models directory

torch.save(model.state_dict(), os.path.join(models_directory, model_name))

        

# determine mean min-batch loss of epoch

train_epoch_losses.append(train_epoch_loss)

with this error message: