For loops inside forward definition in nn.Module class for GRU cells

Hi! I’m implementing a class with nn.Module, GRUcells, normalisation and dropout. I am mostly wondering if the way I implemented the GRUCells forward pass is correct and autograd would take care of properly transmitting the gradients. I used a for loop taking every time step in the input then passed that time step through the GRU cell and then used the hidden output and the next time step to continue until the sequence finishes.

Here is a snippet for clarity.
Many thanks!

class myGRU(nn.Module):

    def __init__(self, input_size, hidden_size, t_samps, dropout=0.0, bias=True):

        super(myGRU, self).__init__()

        self.GRUcell = torch.nn.GRUCell(input_size, hidden_size, bias=bias)

        # LayerNorm
        self.Norm = nn.LocalResponseNorm(input_size)

        # Dropout
        self.Dropout = nn.Dropout(p=dropout)

        # Others
        self.hids = hidden_size

    def forward(self, x, h0=0):

        device = getDevice()

        # Initialise output sequence
        out_seq = torch.zeros(x.shape[0], self.hids, x.shape[-1]).to(device)

        # Dropout units
        x = self.Dropout(x)

        # Normalise
        x = self.Norm(x)

        # x [batch_size, input_size, length]
        for i in range(x.shape[-1]): # for all elements in sequence
             if i == 0:
                 h_out = self.GRUcell(x[:,:,i].to(device)) # h_out [B, hidden_size]
                 h_out = self.GRUcell(x[:,:,i].to(device),

             if h_out.requires_grad:
                  h_out.register_hook(lambda grad: grad.clamp(-10.0,10.0))

             out_seq[:,:,i] = h_out # Store in initialised memory. Is the graph properly defined?