Given groups=1, weight of size [10, 1, 5, 5], expected input[64, 3, 32, 32] to have 1 channels, but got 3 channels instead

#!/usr/bin/env python
# coding: utf-8

# # 신경망 깊게 쌓아 컬러 데이터셋에 적용하기
# Convolutional Neural Network (CNN) 을 쌓아올려 딥한 러닝을 해봅시다.

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import transforms, datasets, models


USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if USE_CUDA else "cpu")


# ## 하이퍼파라미터 

EPOCHS     = 40
BATCH_SIZE = 64


# ## 데이터셋 불러오기

train_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./.data',
                   train=True,
                   download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,),
                                            (0.3081,))])),
    batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./.data',
                   train=False, 
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,),
                                            (0.3081,))])),
    batch_size=BATCH_SIZE, shuffle=True)


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
        
    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x),2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
        
model     = CNN().to(DEVICE)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

print(model)


def train(model, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(DEVICE), target.to(DEVICE)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        optimizer.step()
        
        if batch_idx % 200 == 0:
            print('Train Epoch: {} [{}/{}({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_dix * len(data), 
                                                                          len(train_loader.dataset),
                                                                          100.*batch_idx / len(train_loader),
                                                                          loss.item()))


def evaluate(model, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(DEVICE), target.to(DEVICE)
            output = model(data)

            # 배치 오차를 합산
            test_loss += F.cross_entropy(output, target,
                                         reduction='sum').item()

            # 가장 높은 값을 가진 인덱스가 바로 예측값
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    test_accuracy = 100. * correct / len(test_loader.dataset)
    return test_loss, test_accuracy


for epoch in range(1, EPOCHS + 1):
    train(model, train_loader, optimizer, epoch)
    test_loss, test_accuracy = evaluate(model, test_loader)
    
    print('[{}] Test Loss: {:.4f}, Accuracy: {:.2f}%'.format(
          epoch, test_loss, test_accuracy))



----------------------------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-3-c50570b052a0> in <module>
     24 
     25 for epoch in range(1, EPOCHS + 1):
---> 26     train(model, train_loader, optimizer, epoch)
     27     test_loss, test_accuracy = evaluate(model, test_loader)
     28 

<ipython-input-2-8034379e07ea> in train(model, train_loader, optimizer, epoch)
      6         data, target = data.to(DEVICE), target.to(DEVICE)
      7         optimizer.zero_grad()
----> 8         output = model(data)
      9         loss = F.cross_entropy(output, target)
     10         loss.backward()

~\anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

<ipython-input-1-fdc19dfe5bb3> in forward(self, x)
     53 
     54     def forward(self, x):
---> 55         x = F.relu(F.max_pool2d(self.conv1(x),2))
     56         x = F.relu(F.max_pool2d(self.conv2_drop(self.coPreformatted textnv2(x)), 2))
     57         x = x.view(-1, 320)

~\anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

~\anaconda3\lib\site-packages\torch\nn\modules\conv.py in forward(self, input)
    421 
    422     def forward(self, input: Tensor) -> Tensor:
--> 423         return self._conv_forward(input, self.weight)
    424 
    425 class Conv3d(_ConvNd):

~\anaconda3\lib\site-packages\torch\nn\modules\conv.py in _conv_forward(self, input, weight)
    417                             weight, self.bias, self.stride,
    418                             _pair(0), self.dilation, self.groups)
--> 419         return F.conv2d(input, weight, self.bias, self.stride,
    420                         self.padding, self.dilation, self.groups)
    421 

RuntimeError: Given groups=1, weight of size [10, 1, 5, 5], expected input[64, 3, 32, 32] to have 1 channels, but got 3 channels instead

The first conv layer in your model (conv1 = nn.Conv2d(1, 10, kernel_size=5)) expects an input tensor with a single channel, while you are passing a batch of 64 image tensors each with 3 channels.
You would either have to transform the CIFAR10 images to grayscale images or change the conv1 layer to accept 3 input channels.