Having TypeError: pic should be PIL Image or ndarray. Got <class 'NoneType'> For custom dataset

I’m trying to use a custom unlabeled dataset for self-supervised training and I got “TypeError: pic should be PIL Image or ndarray. Got <class ‘NoneType’>”. I have double checked the image files in the directory and it is seems that no image is missing. I have attached relevant code snippet below.
This is the definition of my dataset

from torch.utils.data import Dataset
from PIL import Image
import torchvision.transforms as transforms
import os

class UnlabelDataset(Dataset):
    def __init__(self, data_path=None, transforms=None):
        self.im_list = os.listdir(data_path)
        self.transforms = transforms
        self.data_path = data_path
        # print(self.im_list)
        # for image in self.im_list:
        #     if not os.path.isfile(os.path.join(self.data_path, image)):
        #         print(f"{os.path.join(self.data_path, image)} not present!")
        # exit()

    def __getitem__(self, index):
        # load image and return an image pair as indicated in SimSiam
        if self.data_path is not None:
            img_path = os.path.join(self.data_path, self.im_list[index])
            img = Image.open(img_path)
            # print(img)
        else:
            img = Image.open(self.im_list[index])

        img_1 = self.transforms(img)

        img_2 = self.transforms(img)
        return [img_1, img_2]

    def __len__(self):
        return len(self.im_list)

This is the definition of train set and train loader

traindir = args.train_data
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    augmentation = [
        # transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
        transforms.Resize(224),
        transforms.RandomApply([
            transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)  # not strengthened
        ], p=0.8),
        transforms.RandomGrayscale(p=0.2),
        transforms.RandomApply([simsiam.loader.GaussianBlur([.1, 2.])], p=0.5),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize
    ]
    train_dataset = UnlabelDataset(traindir, transforms.Compose(augmentation))
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True, drop_last=True)
    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, init_lr, epoch, args)
        train(train_loader, model, criterion, optimizer, epoch, args)

Here is the train function.

def train(train_loader, model, criterion, optimizer, epoch, args):
    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses],
        prefix="Epoch: [{}]".format(epoch))
    # switch to train mode
    model.train()
    end = time.time()
    for i, (images, _) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        images[0] = images[0].cuda()
        images[1] = images[1].cuda()
        # loss from datadict
        p1, p2, z1, z2 = model(x1=images[0], x2=images[1])
        loss = -(criterion(p1, z2).mean() + criterion(p2, z1).mean()) * 0.5

        losses.update(loss.item(), images[0].size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
        i += 1

        sys.stdout.flush()

And this is the error I received.

I found the problem, the my GaussianBlur is wrong.

That’s interesting as I was also speculating if a transformation might be missing a return statement or so. What was the issue in your GaussianBlur implementation?

I mistakenly removed the variable in the return statement in GaussianBlur. Thanks for the reply!