I have a simple example that is not working. I want to extract a tensor from tr_input using the indices from tr_ind.
print(np.shape(tr_ind))
print(np.shape(tr_input))
tr_input1 = tr_input[tr_ind]
torch.Size([150])
torch.Size([1515, 200, 28])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-28-5b55de0850db> in <module>()
6 print(np.shape(tr_input))
7
----> 8 tr_input1 = tr_input[tr_ind,:,:]
9 #tr_target1 = tr_target[tr_ind]
10 #val_input = tr_input[val_ind]
~\Anaconda3\envs\dl\lib\site-packages\torch\autograd\variable.py in __getitem__(self, key)
76 return IndexSelect.apply(self, 0, key)
77 # else fall through and raise an error in Index
---> 78 return Index.apply(self, key)
79
80 def __setitem__(self, key, value):
~\Anaconda3\envs\dl\lib\site-packages\torch\autograd\_functions\tensor.py in forward(ctx, i, index)
87 result = i.index(ctx.index)
88 else:
---> 89 result = i.index(ctx.index)
90 ctx.mark_shared_storage((i, result))
91 return result
TypeError: Performing basic indexing on a tensor and encountered an error indexing dim 0 with an object of type torch.IntTensor. The only supported types are integers, slices, numpy scalars, or if indexing with a torch.LongTensor or torch.ByteTensor only a single Tensor may be passed.