**I want to add the L1 regularization to the MSELoss function to get a sparse net model, so i write the following code. However, i can not see any of the net weight shrinking to zero. As i know, L1 regularization will make more weights zero. So, what’s the problem? Any mistake in my code?**

```
loss_func = t.nn.MSELoss()
optimizer = t.optim.SGD(net.parameters(), lr)
for epoch in range(EPOCH):
for i, data in enumerate(train_loader):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
prediction = net(inputs)
loss = loss_func(prediction, labels)
param = list(net.named_parameters())
param0 = np.array(param[0])[1].data
param1 = np.array(param[2])[1].data
loss = L1_lambda * (t.norm(param0, 1) + t.norm(param1, 1)) + loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
```