How to check gradients?

I want to know how to check the gradient value while training.
Im training the ResNet-34 in CIFAR-10 (image classification task)
I think that storing all gradients requires too much memory storage.
So, i want to check the mean & variance of the gradients at every epoch.
How can i do this??
(Attach the main script below)

def main():
parser = get_parser()
args = parser.parse_args()
train_loader, test_loader = build_dataset(args)
device = ‘cuda’ if torch.cuda.is_available() else ‘cpu’
if args.resume:
ckpt = load_checkpoint(ckpt_name)
start_epoch = ckpt[‘epoch’]

    curve = os.path.join('curve', ckpt_name)
    curve = torch.load(curve)
    train_losses = curve['train_loss']
    test_accuracies = curve['test_acc']
    ckpt = None
    start_epoch = -1
    train_losses = []
    test_accuracies = []

net = build_model(args, device, ckpt=ckpt)
criterion = nn.CrossEntropyLoss()

optimizer = Adam(args, net.parameters())
start_time = time.time()

for epoch in range(start_epoch + 1, args.total_epoch):
    start = time.time()
    train_loss, train_acc = train(net, epoch, device, train_loader, optimizer, criterion, args)
    test_loss, test_acc = test(net, epoch, device, test_loader, criterion)
    end = time.time()
    print('Time {}'.format(end-start))


end_time = time.time()
print('End Time: {}'.format(end_time - start_time))

You should be able to access the .grad attribute of your model tensors (e.g., via net.parameters()) and use that to compute the statistics you wish.

Thanks! ill try this