How to convert a keras layer to equivalent pytorch layer?

Hello there,
May someone provide some codes to help me how can I convert keras convolution, batchnorm, leakyRelu and maxpooling layers to pytorch equivalent? Are there any differences between these layers in keras and pytorch? I have wrote some codes to do this but not sure about the correctness.

I have a .h5 file which has the pretrained model in keras. What I want to do is to create a dictionary variable in python which is indexed by the layer name and has the definition of each layer in pytorch. Here is the code:

def loadWeights(self):
        model = load_model('keras_model.h5')        
        j = json.loads(model.to_json())

        for i, layer in enumerate(j['config']['layers']):
            ln = layer['name']
            l = model.get_layer(name=layer['name'])
            if layer['class_name'] != 'Concatenate':
                self.lid[ln] = l.input_shape[3]
                self.lid[ln] = l.input_shape[0][3]
            self.lod[ln] = l.output_shape[3]
            w = l.get_weights()
            if layer['class_name'] == 'Conv2D':
                filter_size = layer['config']['kernel_size'][0]
                if filter_size == 3:
                    self.layers[ln] = nn.Conv2d(self.lid[ln],self.lod[ln], 
                elif filter_size==1:
                    self.layers[ln] = nn.Conv2d(self.lid[ln],self.lod[ln], 
                self.layers[ln] = torch.from_numpy(w[0].transpose((3,2,0,1)))

            elif layer['class_name'] == 'BatchNormalization':
                self.layers[ln] = nn.BatchNorm2d(self.lid[ln])
                self.layers[ln] = torch.from_numpy(w[0])
                self.layers[ln] = torch.from_numpy(w[1])
                self.layers[ln] = torch.from_numpy(w[2])
                self.layers[ln] = torch.from_numpy(w[3])

            elif layer['class_name'] == 'LeakyReLU':
                self.layers[ln] = nn.LeakyReLU(.1)
            elif layer['class_name'] == 'MaxPooling2D':
                self.layers[ln] = nn.MaxPool2d(2, 2)
            elif layer['class_name'] == 'Lambda':
                self.layers[ln] = scale_to_depth(2)

May someone verify this code for me?
Thanks by the way!